Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T16:42:49.994Z Has data issue: false hasContentIssue false

Layer-by-layer and step-flow growth mechanisms in GaAsP/GaP nanowire heterostructures

Published online by Cambridge University Press:  03 March 2011

C. Chen
Affiliation:
Centre for Emerging Device Technologies, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
M.C. Plante
Affiliation:
Centre for Emerging Device Technologies, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
C. Fradin
Affiliation:
Department of Physics and Astronomy and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
R.R. LaPierre*
Affiliation:
Centre for Emerging Device Technologies, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
*
a) Address all correspondence to this author. e-mail: lapierr@mcmaster.ca
Get access

Abstract

GaP–GaAsP segmented nanowires (NWs), with diameters ranging between 20 and 500 nm and lengths between 0.5 and 2 μm, were catalytically grown from Au particles on a GaAs (111)B substrate in a gas source molecular beam epitaxy system. The morphology of the NWs was either pencil-shaped with a tapered tip or rod-shaped with a constant diameter along the entire length. Stacking faults were observed for most NWs with diameters greater than 30 nm, but thinner ones tended to exhibit fewer defects. Moreover, stacking faults were more likely found in GaAsP than in GaP. The composition of the pencil NWs exhibited a core–shell structure at the interface region, and rod-shaped NWs resulted in planar and atomically abrupt heterointerfaces. A detailed growth mechanism is presented based on a layer-by-layer growth mode for the rod-shaped NWs and a step-flow growth mode for the tapered region of the pencil NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).CrossRefGoogle ScholarPubMed
2.Huang, Y., Duan, X.F., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).CrossRefGoogle ScholarPubMed
3.Thelander, C., Nilsson, H.A., Jensen, L.E., Samuelson, L.: Nanowire single-electron memory. Nano Lett. 5, 635 (2005).CrossRefGoogle ScholarPubMed
4.Zhong, Z.H., Qian, F., Wang, D.L., Lieber, C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003).CrossRefGoogle Scholar
5.Bjork, M.T., Ohlsson, B.J., Thelander, C., Persson, A.I., Deppert, K., Wallenberg, L.R., Samuelson, L.: Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81, 4458 (2002).CrossRefGoogle Scholar
6.Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51 (2004).CrossRefGoogle Scholar
7.Patolsky, F., Zheng, G.F., Hayden, O., Lakadamyali, M., Zhuang, X.W., Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).CrossRefGoogle ScholarPubMed
8.Barrelet, C.J., Bao, J.M., Loncar, M., Park, H.G., Capasso, F., Lieber, C.M.: Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11 (2006).CrossRefGoogle ScholarPubMed
9.Friedman, R.S., McAlpine, M.C., Ricketts, D.S., Ham, D., Lieber, C.M.: High-speed integrated nanowire circuits. Nature 434, 1085 (2005).CrossRefGoogle ScholarPubMed
10.Huang, Y., Duan, X.F., Lieber, C.M.: Nanowires for integrated multicolor nanophotonics. Small 1, 142 (2005).CrossRefGoogle ScholarPubMed
11.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet NW nanolasers. Science 292, 1897 (2001).CrossRefGoogle Scholar
12.Seifert, W., Borgström, M., Deppert, K., Dick, K.A., Johansson, J., Larsson, M.W., Mårtensson, T., Sköld, N., Svensson, C.P.T., Wacaser, B.A., Wallenberg, L.R., Samuelson, L.: Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211 (2004).CrossRefGoogle Scholar
13.Borgström, M., Deppert, K., Samuelson, L., Seifert, W.: Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: A growth study. J. Cryst. Growth 260, 18 (2004).CrossRefGoogle Scholar
14.Persson, A.I., Ohlsson, B.J., Jeppesen, S., Samuelson, L.: Growth mechanisms for GaAs NWs grown in CBE. J. Cryst. Growth 272, 167 (2004).CrossRefGoogle Scholar
15.Bhunia, S., Kawamura, T., Fujikawa, S., Watanabe, Y.: Systematic investigation of growth of InP NWs by metalorganic vapor-phase epitaxy. Physica E (Amsterdam) 24, 138 (2004).CrossRefGoogle Scholar
16.Bhunia, S., Kawamura, T., Fujikawa, S., Nakashima, H., Furukawa, K., Torimitsu, K., Watanabe, Y.: Vapor–liquid–solid growth of vertically aligned InP NWs by metalorganic vapor phase epitaxy. Thin Solid Films 464–465, 244 (2004).CrossRefGoogle Scholar
17.Bhunia, S., Kawamura, T., Fujikawa, S., Tokushima, K., Watanabe, Y.: Free-standing and vertically aligned InP NWs grown by metalorganic vapor phase epitaxy. Physica E (Amsterdam). 21, 583 (2004).CrossRefGoogle Scholar
18.Plante, M.C., LaPierre, R.R.: Growth mechanisms of GaAs NWs by gas source molecular beam epitaxy. J. Cryst. Growth 286, 394 (2006).CrossRefGoogle Scholar
19.Reimer, L.: Scanning Electron Microscopy—Physics of Image Formation and Microanalysis (Springer-Verlag, New York, 1985), pp. 57127.CrossRefGoogle Scholar
20.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., Koguchi, M., Kakibayashi, H.: Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
21.Ohlsson, B.J., Björk, M.T., Persson, A.I., Thelander, C., Wallenberg, L.R., Magnusson, M.H., Deppert, K., Samuelson, L.: Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. Physica E (Amsterdam) 13, 1126 (2002).CrossRefGoogle Scholar
22.Yacaman, M.J., Ascencio, J.A., Liu, H.B., Gardea-Torresdey, J.: Structure shape and stability of nanometric sized particles. J. Vac. Sci. Technol., B 19, 1091 (2001).CrossRefGoogle Scholar
23.Massalski, T.B.: Binary Alloy Phase Diagrams, Vol. 5 (American Society for Metals, Metals Park, OH, 1986).Google Scholar
24.Krishnamachari, U., Borgstrom, M., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., Wallenberg, L.R.: Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 85, 2077 (2004).CrossRefGoogle Scholar
25.Wu, Z.H., Mei, X., Kim, D., Ruda, H.E., Liu, J.Q., Kavanagh, K.L.: Growth, branching, and kinking of molecular-beam epitaxial 〈110〉 GaAs nanowires. Appl. Phys. Lett. 83, 3368 (2003).CrossRefGoogle Scholar
26.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).CrossRefGoogle Scholar
27.Jensen, L.E., Bjork, M.T., Jeppesen, S., Persson, A.I., Ohlsson, B.J., Samuelson, L.: Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4, 1961 (2004).CrossRefGoogle Scholar
28.Wang, H., Fischman, G.S.: Role of liquid droplet surface diffusion in the vapor-liquid-solid whisker growth mechanism. J. Appl. Phys. 76, 1557 (1994).CrossRefGoogle Scholar
29.LaPierre, R.R., Robinson, B.J., Thompson, D.A.: Group V incorporation in InGaAsP grown on InP by gas source molecular beam epitaxy. J. Appl. Phys. 79, 3021 (1996).CrossRefGoogle Scholar
30.Hata, M., Isu, T., Watanabe, A., Kajikawa, Y.: Surface diffusion and sticking coefficient of adatoms to atomic steps during molecular-beam-epitaxy growth. J. Cryst. Growth 114, 203 (1991).CrossRefGoogle Scholar
31.Neave, J.H., Dobson, P.J., Joyce, B.A., Zhang, J.: Reflection high-energy electron diffraction oscillations from vicinal surfaces—A new approach to surface diffusion measurements. Appl. Phys. Lett. 47, 100 (1985).CrossRefGoogle Scholar
32.Shi, S-C., Chattopadhyay, S., Chen, C-F., Chen, K-H., Chen, L-C.: Structural evolution of AlN nano-structures: Nanotips and nanorods. Chem. Phys. Lett. 418, 152 (2006).CrossRefGoogle Scholar
33.Verheijen, M.A., Immik, G., de Smet, T., Börgstrom, M.T., Bakkers, E.: Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 128, 1353 (2006).CrossRefGoogle ScholarPubMed
34.Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., Wang, L-W., Alivisatos, P.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190 (2004).CrossRefGoogle ScholarPubMed
35.Soshnikov, I.P., Cirlin, G.E., Tonkikh, A.A., Samsonenko, Y.B., Dubovskii, V.G., Ustinov, V.M., Gorbenko, O.M., Litvinov, D., Gerthsen, D.: Atomic structure of MBE-grown GaAs nanowhiskers. Phys. Solid State 47, 2213 (2005).CrossRefGoogle Scholar
36.Johansson, J., Svensson, C.P.T., Martensson, T., Samuelson, L., Seifert, W.: Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567 (2005).CrossRefGoogle ScholarPubMed