Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T23:26:42.954Z Has data issue: false hasContentIssue false

Large grain polycrystalline silicon via chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Bruce N. Beckloff
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
W. Jack Lackey
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Elliott M. Pickering
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Get access

Abstract

Large grain polycrystalline Si films were grown by chemical vapor deposition (CVD) onto TiB2 substrates using the SiCl4–H2 reagent system. A statistically designed processing study was used to correlate the film growth rate, crystallographic orientation, and grain size with deposition temperature, the SiCl4 : H2 ratio, and the level of B doping. Each process variable influenced grain size with temperature having the dominant effect. Grains as large as 15 to 20 μm were achieved for a coating thickness of about 50 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sherman, A., Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications (Noyes Publications, Park Ridge, NJ, 1987).Google Scholar
2.Chu, T. L., Chu, S. S., Lin, C. L., and Abderrassoul, R., J. Appl. Phys. 50 (2), 919921 (1979).CrossRefGoogle Scholar
3.Kerber, M., Bettini, M., and Gornik, E., in Conference of Record of the 16th Conference of the IEEE Photovoltaic Specialists (1984), pp. 275280.Google Scholar
4.Barnett, A.M., Fardig, D.A., Hall, R. B., Rand, J. A., and Ford, D.H., in Conference of Record of the 19th Conference of the IEEE Photovoltaic Specialists (1987), pp. 12661270.Google Scholar
5.Barnett, A. M., 6th Int. Photovoltaic Science and Eng. Conf. (PVSEC-6), New Delhi, India, Feb. 10–14 (1992), pp. 737744.Google Scholar
6.Feldman, C., Blum, N.A., and Satkiewicz, F. G., in Conference of Record of the 12th Conference of the IEEE Photovoltaic Specialists (1980), pp. 391396.Google Scholar
7.Ishihara, T., Arimoto, S., Morikawa, H., Kumabe, H., Murotani, T., and Mitsui, S., Appl. Phys. Lett. 63 (26), 36043606 (1993).CrossRefGoogle Scholar
8.Voutsas, A. T. and Hatalis, M. K., J. Electrochem. Soc. 139 (9), 26592665 (1992).CrossRefGoogle Scholar
9.Voutsas, A.T. and Hatalis, M.K., J. Electrochem. Soc. 140 (1), 282288 (1993).CrossRefGoogle Scholar
10.Nagahara, T., Fujimoto, K., Kohno, N., Kashiwagi, Y., and Kakinoki, H., Jpn. J. Appl. Phys., Part 1, 31 (12B), 45554558 (1992).CrossRefGoogle Scholar
11.Mohri, M., Kakinuma, H., Sakamoto, M., and Sawai, H., Jpn. J. Appl. Phys., Part 2, 30 (5A), 779782 (1991).CrossRefGoogle Scholar
12.Matsumura, H., Jpn. J. Appl. Phys., Part 2, 30 (8B), 15221524 (1991).CrossRefGoogle Scholar
13.Bielle-Daspet, D., Scheid, E., Azzaro, C., DeMauduit, B., and Pieraggi, B., Thin Solid Films 204 (1), 3348 (1991).CrossRefGoogle Scholar
14.Lee, E.G. and Im, H. G., J. Electrochem. Soc. 138 (11), 34663469 (1991).Google Scholar
15.Nakazawa, K., Tanaka, K., and Hamauchi, N., Jpn. J. Appl. Phys., Part 1, 28 (4), 569572 (1984).CrossRefGoogle Scholar
16.Mizushima, I., Ohori, K., Itoh, K., and Kuwano, H., “Mosfet's in Polycrystalline Si Recrystallized with the Process of SSiC-Seed Selection Through Ion Channeling,” Keio Univ., Yokohama, Japan, Trans. Inst. Electron Inf. Commun. Eng. Sect. #, Vol. E70 (11), 1987, paper from the 1987 Natl. Conf. on Semicond. Devices and Mater. IEICE, Kumamoto, Japan, Nov. 1–4, 1987, pp. 10621064.Google Scholar
17.Kung, E.T-Y., Iverson, R. B., and Reif, R., Mater. Lett. 3 (1–2), 2428 (1984).CrossRefGoogle Scholar
18.Hajjar, J-J.J, Reif, R., and Adler, D., J. Electron Mater. 15 (5), 279285 (1986).CrossRefGoogle Scholar
19.Noguchi, T., Hayashi, H., and Oshima, T., Jpn. J. Appl. Phys., Part 2, 24 (6), 434436 (1985).CrossRefGoogle Scholar
20.Chu, T.L., Mollenkopf, H. C., and Chu, S. C., J. Electrochem. Soc. 123 (1), 106110 (1976).CrossRefGoogle Scholar
21.Seto, J. Y. W., J. Electrochem. Soc. 122 (55), 701706 (1975).CrossRefGoogle Scholar
22.Bisaro, R., Magarino, J., Proust, N., and Zellama, K., J. Appl. Phys. 59 (4), 11671178 (1986).CrossRefGoogle Scholar
23.Eversteyn, F.C. and Put, B.H., J. Electrochem. Soc. 120 (1), 106110 (1973).CrossRefGoogle Scholar
24.Farrow, R.F. C., J. Electrochem. Soc. 121 (7), 899907 (1974).CrossRefGoogle Scholar
25.Yasuda, Y. and Moriya, T., J. Electrochem. Soc. 123 (8), 12451247 (1974).Google Scholar
26.Cowher, M.E. and Sedwick, T. O., J. Electrochem. Soc. 119 (11), 15651570 (1972).CrossRefGoogle Scholar
27.Bloem, J. and Giling, L. J., in Current Topics in Materials Science, Vol. 1 (North-Holland Publishing Company, New York, 1978).Google Scholar
28.Lackey, W.J. and Starr, T. L., in Fiber Reinforced Ceramics, edited by Mazdiyasni, K.S. (Noyes Publications, Park Ridge, NJ, 1990), pp. 397450.Google Scholar
29.Beckloff, B.N. and Lackey, W. J., J. Am. Ceram. Soc. (1999).Google Scholar
30.Besmann, T.M., “SOLGASMIX-PV, A Computer Program to Calculate Equilibrium Relationships in Complex Chemical Systems,” ORNL TM-5775, Oak Ridge National Laboratory, Oak Ridge, TN (1977).CrossRefGoogle Scholar
31.Beckloff, B.N., M.S. Thesis, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (1996).Google Scholar