Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:47:51.273Z Has data issue: false hasContentIssue false

Kinetics of the solid-state reaction for the formation of amorphous ZrCo studied by electrical conductance measurements

Published online by Cambridge University Press:  31 January 2011

H. Schröder
Affiliation:
I. Physikalisches Institut der Universität Göttingen, Bunsenstrasse 9, D-3400 Göttingen, Federal Republic of Germany
K. Samwer
Affiliation:
I. Physikalisches Institut der Universität Göttingen, Bunsenstrasse 9, D-3400 Göttingen, Federal Republic of Germany
Get access

Abstract

Thin-film reactions of Co with Zr have been studied in the temperature range between 473 and 523 K by electrical conductance measurements and cross-sectional transmission electron microscopy (CS-TEM). The reduction of the electrical conductance during the solid state reaction is explained by formation and growth of an amorphous phase at every Zr/Co interface. For long reaction times the growth of the layer thickness follows a shifted $\sqrt t$ law. For short reaction times the measurements show a linear time law, which is expected for an interface limited reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Clemens, B. M., Phys. Rev. B 33, 7615 (1986).CrossRefGoogle Scholar
2Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
3Rossum, M. van, Nicolet, M. A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
4Samwer, K., Schroder, H., and Moske, M., Mater. Res. Soc. Proc. 57, 405 (1987).CrossRefGoogle Scholar
5Dolgin, B. and Johnson, W. L. (unpublished results).Google Scholar
6Schroder, H. and Samwer, K., Z. Phys. Chem. 157, 265 (1988).CrossRefGoogle Scholar
7Garulli, A., Armigliato, A., and Vanzi, M., J. Microsc. Spectrosc. Electron. 10, 135 (1985).Google Scholar
8Krebs, H. U. and Samwer, K., Europhys. Lett. 2, 141 (1986).CrossRefGoogle Scholar
9Pampus, K., Bottiger, J., Torp, B., Schroder, H., and Samwer, K., Phys. Rev. B 35, 7010 (1987).CrossRefGoogle Scholar
10Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
11Cheng, Y.-T., Johnson, W. L., and Nicolet, M. A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
12Gosele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
13Tu, K. N. and Berry, B. S., J. Appl. Phys. 43, 3283 (1972).CrossRefGoogle Scholar
14Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., Pers, N. M. van der, and Keijser, Th. H. de, J. Mater. Res. 1, 744 (1986),CrossRefGoogle Scholar
15Pampus, K., Samwer, K., and Bottiger, J., Europhys. Lett. 3, 581 (1987).CrossRefGoogle Scholar