Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:51:13.254Z Has data issue: false hasContentIssue false

Is Y1Ba2Cu3O7 stiff or soft?

Published online by Cambridge University Press:  31 January 2011

Hassel Ledbetter
Affiliation:
Institute of Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80303
Ming Lei
Affiliation:
Institute of Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80303
Get access

Abstract

Using several measured and calculated physical properties, we argue that the high-Tc metal-oxide superconductor Y1Ba2Cu3O7 is elastically soft compared with BaTiO3 or SrTiO3. We conclude that the bulk modulus equals approximately 107 GPa, despite several high-pressure x-ray diffraction studies that report values up to approximately 200 GPa. Part of the argument uses an ionic-crystal-model calculation of the bulk modulus.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Girifalco, L. A., Statistical Physics of Materials (Wiley, New York, 1973), p. 76.Google Scholar
2Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 108, 1175 (1957).Google Scholar
3McMillan, W.L., Phys. Rev. 167, 331 (1968).Google Scholar
4Allen, P.B. and Dynes, R.C., Phys. Rev. B 12, 905 (1975).CrossRefGoogle Scholar
5 Reported by Bardeen, J., in High-Temperature Superconductors (Mater. Res. Soc, Pittsburgh, PA, 1988), p. 27.Google Scholar
6Kresin, V. Z., Phys. Lett. A 122, 434 (1987).CrossRefGoogle Scholar
7Takahashi, H., Jpn. J. Appl. Phys. 26, 1109 (1987).Google Scholar
8Murata, K., Electrotech. Lab. (Tsukuba), personal communica-tion (May 1988).Google Scholar
9Somenkov, V., Kurchatov Inst. (Moscow), personal communica-tion (May 1988).Google Scholar
10Fietz, W. H., Dietrich, M. R., and Ecke, J., Z. Phys. B 69, 17 (1987).CrossRefGoogle Scholar
11Block, S., Piermarini, G. J., Munro, R.G., and Wong-Ng, W., Adv. Ceram. Mater. 2, Special Issue 3B, 601 (1987).Google Scholar
12Salomons, E., Hemmes, H., Scholtz, J. J., Koeman, N., Brouwer, R., Driessen, A., De Groot, D. G., and Giessen, R., Physica B 145, 253 (1987).CrossRefGoogle Scholar
13Syassen, K., Hanfland, M., Strössner, K., Holtz, M., Kress, W., Cardona, M., Schröder, U., Prade, J., Kulkarni, A. D., and de Wette, F.W., Physica C 153–155, 264 (1988).CrossRefGoogle Scholar
14Junod, A., Bezinge, A., and Muller, J., Physica C 152, 50 (1988).CrossRefGoogle Scholar
15Ledbetter, H., Proc. MRS Int. Meet. Adv. Mater., Tokyo (May 1988), (Mater. Res. Soc, Pittsburgh, PA, 1989), p. 689.Google Scholar
16Cohen, R. E., Pickett, W. E., Krakauer, H., and Boyer, L. L., Phys-ica C 153–155, 202 (1988).CrossRefGoogle Scholar
I7Iguchi, E. and Yonezawa, Y., Jpn. J. Appl. Phys. Lett. 26, L1492 (1987).CrossRefGoogle Scholar
18Kress, W., Schroder, U., Prade, J., Kulkarni, A. D., and de Wette, F.W., Physica C 153–155, 221 (1988).Google Scholar
19Wright, N. F. and Butler, W. H., in High-Temperature Superconduc-tors II (Mater. Res. Soc, Pittsburgh, PA, 1988), p. 25.Google Scholar
20Barker, R. E., J. Appl. Phys. 34, 107 (1963).CrossRefGoogle Scholar
21David, W.I.F., Harrison, W.T.A., Gunn, J.M.F., Moze, O., Soper, A.K., Day, P., Jorgensen, J.D., Hinks, D. G., Beno, M.A., Soderholm, L., Capone, D.W., Schuller, I.K., Segre, CU., Zhang, K., and Grace, J. D., Nature 327, 310 (1987).CrossRefGoogle Scholar
22Zachariasen, W. H., J. Less-Comm. Met. 62, 1 (1978).CrossRefGoogle Scholar
23Beattie, A.G. and Samara, G. A., J. Appl. Phys. 42, 2376 (1971).CrossRefGoogle Scholar
24Griineisen, E., in Handbuch der Physik (Springer, Berlin, 1926), Vol. 10, p. 1, Eq. 33.Google Scholar
25Anderson, D. L. and Anderson, O. L., J. Geophys. Res. 75, 3494 (1970).Google Scholar
26Brown, F.C., The Physics of Solids (Benjamin, New York, 1967), pp. 105106.Google Scholar
27van Gool, W. and Piken, A.G., J. Mater. Sci. 4, 95 (1969).CrossRefGoogle Scholar
28Inderhees, S. E., Salamon, M.B., Friedmann, T.A., and Ginsberg, D. M., Phys. Rev. B 36, 2401 (1987).CrossRefGoogle Scholar
29Ledbetter, H., unpublished research, NIST, Boulder (1987).Google Scholar
30Migliori, A., Visscher, W. M., Brown, S. E., Fisk, Z., Cheong, S.W., Alten, B., Ahrens, E.T., Martin, K. A., Maynard, J. D., Huang, Y., Kirk, D. R., Gillis, K. A., Kim, H. K., and Chan, M.H.W., preprint, Los Alamos National Laboratory (1989).Google Scholar
31Ledbetter, H., Kim, S. A., Violet, C. E., and Thompson, J. D., M2S-HTSC (Stanford, July 1989), to appear in Physica C.Google Scholar
32Reichardt, W., Pintschovius, L., Hennion, B., and Collin, F., Supercond. Sci. Technol. 1, 173 (1988).CrossRefGoogle Scholar
33Saint-Paul, M., Tholence, J. L., Monceau, P., Noel, H., Levet, J. C., Potel, M., Gougeon, P., and Capponi, J. J., Solid State Commun. 66, 641 (1988).CrossRefGoogle Scholar
34Baumgart, P., Blumenröder, S., Erie, A., Hillebrands, B., Güntherodt, G., and Schmidt, H., Solid State Commun. 69, 1135 (1989).Google Scholar
35Golding, B., Haemmerle, W. H., Schneemeyer, L. F., and Waszczak, J.V., in IEEE 1988 Ultrasonics Symposium (IEEE, Piscat-away, NJ, 1988), p. 1079.Google Scholar
36Terada, N., Ihara, H., Jo, M., Hirabayashi, M., Murata, K., Oyanagi, H., Sugise, R., Shimomura, O., and Kikegawa, T., Physica C 153–155, 976 (1988).CrossRefGoogle Scholar