Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:37:22.734Z Has data issue: false hasContentIssue false

Ionic borohydride clusters for the next generation of boron thin-films: Nano-building blocks for electrochemical and refractory materials

Published online by Cambridge University Press:  08 August 2016

Mark F. Roll*
Affiliation:
Department of Chemical and Materials Engineering, University of Idaho, MS 1021, Moscow, Idaho 83844-31021, United States
*
a) Address all correspondence to this author. e-mail: mroll@uidaho.edu
Get access

Abstract

Boron cluster chemistry roared to life in the 20th century with seminal discoveries outlining the incredibly versatile chemistry of boron, producing a range of neutral and ionic boron compounds that paved the way for a robust suite of hybrid materials that incorporate these electronically delocalized inorganic clusters with the additional organic flexibility. Looking toward further materials research in the 21st century, these stable, inorganic polyhedral borane clusters discovered during previous century will provide a particularly fertile ground for exploration. These stable clusters have already seen significant exploration, but their utility has been obscured by classical synthetic routes using highly toxic neutral borane compounds. This incongruity is quite ironic given the current variety of medical explorations conducted with the essentially nontoxic dodecahedral borane dianion. This article will lay out some essential context and outline key synthetic studies that may dramatically simplify access to these unique compounds to a broader community of materials scientists and engineers.

Type
Focus Section: Reinventing Boron Chemistry and Materials for the 21st Century
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feynman, R.P.: There's plenty of room at the bottom. J. Microelectromech. Syst. 1, 60 (1992).Google Scholar
Roll, M.F.: Symmetric functionalization of polyhedral phenylsilsesquioxanes as a route to nano-building blocks. Ph.D. dissertation, University of Michigan, Ann Arbor, 2010.Google Scholar
Roll, M.F., Kampf, J.W., Kim, Y., Yi, E., and Laine, R.M.: Nano building blocks via iodination of [PhSiO1.5] n , forming [p-I-C6H4SiO1.5] n (n = 8, 10, 12), and a new route to high-surface-area, thermally stable, microporous materials via thermal elimination of I2 . J. Am. Chem. Soc. 132, 10171 (2010).CrossRefGoogle Scholar
Roll, M.F., Asuncion, M.Z., Kampf, J., and Laine, R.M.: para-Octaiodophenylsilsesquioxane, [p-IC6H4SiO1.5]8, a nearly perfect nano-building block. ACS Nano 2, 320 (2008).CrossRefGoogle ScholarPubMed
Antonietti, M. and Ozin, G.A.: Promises and problems of mesoscale materials chemistry or why meso? Chem. - Eur. J. 10, 28 (2004).Google Scholar
Neubrand, A. and Rödel, J.: Gradient materials: An overview of a novel concept. Z. Metallkd. 88, 358 (1997).Google Scholar
Lee, W.Y., Stinton, D.P., Berndt, C.C., Erdogan, F., Lee, Y-D., and Mutasim, Z.: Concept of functionally graded materials for advanced thermal barrier coating applications. J. Am. Ceram. Soc. 79, 3003 (1996).Google Scholar
Encyclopedia of Inorganic and Bioinorganic Chemistry: ‘Plenty of room’ revisited. Nat. Nanotechnol. 4, 781 (2009).Google Scholar
Eigler, D.M. and Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524 (1990).Google Scholar
Lipscomb, W.N., Pitochelli, A.R., and Hawthorne, M.F.: Probable structure of the [B10H10]2− ion. J. Am. Chem. Soc. 81, 5833 (1959).Google Scholar
Kaczmarczyk, A., Dobrott, R.D., and Lipscomb, W.N.: Reactions of [B10H10]2− ion. Proc. Natl. Acad. Sci. 48, 729 (1962).Google Scholar
Lipscomb, W.N.: Framework rearrangement in boranes and carboranes. Science 153, 373 (1966).Google Scholar
Press Release: The 1976 Nobel Prize in Chemistry [Online]. Available: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1976/press.html (accessed May 19, 2016).Google Scholar
van der M. Reddy, J. and Lipscomb, W.N.: Molecular structure of B10H12(CH3CN)2]. J. Chem. Phys. 31, 610 (1959).CrossRefGoogle Scholar
Pitochelli, A.R. and Hawthorne, F.M.: The isolation of the icosahedral [B12H12]2− Ion. J. Am. Chem. Soc. 82, 3228 (1960).Google Scholar
Preetz, W. and Peters, G.: The hexahydro-closo-hexaborate dianion [B6H6]2− and its derivatives. Eur. J. Inorg. Chem. 1999, 1831 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
Sivaev, I.B., Prikaznov, A.V., and Naoufal, D.: Fifty years of the closo-decaborate anion chemistry. Collect. Czech. Chem. Commun. 75, 1149 (2010).Google Scholar
Zhizhin, K.Y., Zhdanov, A.P., and Kuznetsov, N.T.: Derivatives of closo-decaborate anion [B10H10]2− with exo-polyhedral substituents. Russ. J. Inorg. Chem. 55, 2089 (2010).CrossRefGoogle Scholar
Körbe, S., Schreiber, P.J., and Michl, J.: Chemistry of the carba-closo-dodecaborate(−) anion, CB11H12 . Chem. Rev. 106, 5208 (2006).Google Scholar
Bregadze, V.I.: Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem. Rev. 92, 209 (1992).Google Scholar
Grimes, R.N.: Carboranes, 2nd ed. (Academic Press, Burlington, 2011).Google Scholar
Grimes, R.N.: Synthesis and serendipity in boron chemistry: A 50 year perspective. J. Organomet. Chem. 747, 4 (2013).CrossRefGoogle Scholar
Grimes, R.N.: Carboranes in the chemist's toolbox. Dalton Trans. 44, 5939 (2015).Google Scholar
Grimes, R.N.: Boron clusters come of age. J. Chem. Educ. 81, 657 (2004).Google Scholar
Grimes, R.N.: Thomas Jefferson, Alice in Wonderland, polyhedral boranes and the Lipscomb Legacy. In Structures and Mechanisms from Ashes to Enzymes (American Chemical Society, Washington, D.C., 2002); p. 20.CrossRefGoogle Scholar
Hosmane, N.S., Maguire, J.A., and Chakrabarti, A.: Boron hydrides and nanostructured boron materials. In Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, Ltd., Hoboken, 2011).Google Scholar
Gao, S.M. and Hosmane, N.S.: Dendrimer- and nanostructure-supported carboranes and metallocarboranes. Russ. Chem. Bull. 63, 788 (2014).CrossRefGoogle Scholar
Hosmane, N.S., ed.: Boron Science: New Technologies and Applications, 1st ed. (CRC Press, Boca Raton, 2011).Google Scholar
Hosmane, N.S., Maguire, J.A., Zhu, Y., and Takagaki, M.: Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, 1st ed. (World Scientific Publishing Company, Singapore; Hackensack, 2012).Google Scholar
Kolel-Veetil, M.K. and Keller, T.M.: The state of the art in boron polymer chemistry. In Macromolecules Containing Metal and Metal-Like Elements, Abd-El-Aziz, A.S., Carraher, C.E. Jr., Pittman, C.E. Jr., and Zeldin, M., eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 1.Google Scholar
Nagata, Y. and Chujo, Y.: Organoboron polymers. In Macromolecules Containing Metal and Metal-Like Elements, Abd-El-Aziz, A.S., Carraher, C.E. Jr., Pittman, C.E. Jr., and Zeldin, M., eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 121.CrossRefGoogle Scholar
Matsumi, N. and Chujo, Y.: π-Conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polym. J. 40, 77 (2007).Google Scholar
Matsumi, N. and Chujo, Y.: A new class of π-conjugated organoboron polymers. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 51.Google Scholar
Patel, M. and Swain, A.C.: Polymers incorporating icosahedral closo-dicarbaborane units. In Macromolecules Containing Metal and Metal-Like Elements, Abd-El-Aziz, A.S., Carraher, C.E. Jr., Pittman, C.E. Jr., and Zeldin, M., eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 77.Google Scholar
Kaszynski, P.: Four decades of organic chemistry of closo-boranes: A synthetic toolbox for constructing liquid crystal materials. A review. Collect. Czech. Chem. Commun. 64, 895 (1999).CrossRefGoogle Scholar
Kaszynski, P.: closo-Boranes as structural elements for liquid crystals. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press: Boca Raton, 2011).Google Scholar
Ringstrand, B.: Boron clusters as the centerpiece of advanced liquid crystals: Fundamental chemistry and properties. Ph.D. dissertation, Vanderbilt University, Nashville, 2011.Google Scholar
Jelliss, P.A.: Photoluminescence from boron-based polyhedral clusters. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press, Boca Raton, 2011).Google Scholar
Entwistle, C.D. and Marder, T.B.: Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angew. Chem., Int. Ed. 41, 2927 (2002).3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Pelter, A., Pardasani, R.T., and Pardasani, P.: The photochemistry of boron compounds. Tetrahedron 56, 7339 (2000).CrossRefGoogle Scholar
Vöge, A. and Gabel, D.: Boron derivatives for application in nonlinear opics. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press, Boca Raton, 2011).Google Scholar
Lamrani, M., Mitsuishi, M., Hamasaki, R., and Yamamoto, Y.: Engineered fullerenes-carborane conjugated rods: New hybrid materials for NLO devices. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 77.Google Scholar
Ma, N., Yan, L., Guan, W., Qiu, Y., and Su, Z.: Theoretical investigation on electronic structure and second-order nonlinear optical properties of novel hexamolybdate-organoimido-(car)borane hybrid. Phys. Chem. Chem. Phys. 14, 5605 (2012).CrossRefGoogle ScholarPubMed
Dash, B.P., Satapathy, R., Maguire, J.A., and Hosmane, N.S.: Polyhedral boron clusters in materials science. New J. Chem. 35, 1955 (2011).Google Scholar
Yinghuai, Z., Yan, K.C., Maguire, J.A., and Hosmane, N.S.: Boron-based hybrid nanostructures: Novel applications of modern materials. In Hybrid Nanomaterials, Chauhan, B.P.S., ed. (John Wiley & Sons, Inc., Hoboken, 2011); p. 181.Google Scholar
Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds.: Contemporary Boron Chemistry (Royal Society of Chemistry, Cambridge, 2007).Google Scholar
Sanchez, C., Soler-Illia, G.J.de A.A., Ribot, F., Lalot, T., Mayer, C.R., and Cabuil, V.: Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061 (2001).Google Scholar
Miller, H.C., Muetterties, E.L., Boone, J.L., Garrett, P., and Hawthorne, M.F.: Borane anions. In Inorganic Syntheses, Vol. 10, Muetterties, E.L., ed. (John Wiley & Sons, Inc., Hoboken, 1967); p. 81.Google Scholar
Middaugh, R.L.: Chapter 8-closo-Boron hydrides. In Boron Hydride Chemistry, Muetterties, E.L., ed. (Academic Press, New York, 1975); p. 273.CrossRefGoogle Scholar
Sanchez, C., Belleville, P., Popall, M., and Nicole, L.: Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696 (2011).CrossRefGoogle ScholarPubMed
Morris, R.E.: Modular materials from zeolite-like building blocks. J. Mater. Chem. 15, 931 (2005).Google Scholar
Kim, J., Chen, B., Reineke, T.M., Li, H., Eddaoudi, M., Moler, D.B., O'Keeffe, M., and Yaghi, O.M.: Assembly of metal–organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8239 (2001).Google Scholar
Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., and Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705 (2003).Google Scholar
Peymann, T., Knobler, C.B., and Hawthorne, M.F.: An icosahedral array of methyl groups supported by an aromatic borane scaffold: The [closo-B12(CH3)12]2− ion. J. Am. Chem. Soc. 121, 5601 (1999).Google Scholar
Matsumoto, H., Higuchi, K., Kyushin, S., and Goto, M.: Octakis(1,1,2-trimethylpropyl)octasilacubane: Synthesis, molecular structure, and unusual properties. Angew. Chem., Int. Ed. Engl. 31, 1354 (1992).Google Scholar
Hossain, M.A., Hursthouse, M.B., and Malik, K.M.A.: Octa(phenylsilasesquioxane) acetone solvate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 2258 (1979).Google Scholar
Allcock, H.R.: Inorganic–organic polymers. Adv. Mater. 6, 106 (1994).Google Scholar
Richter, R., Roewer, G., Böhme, U., Busch, K., Babonneau, F., Martin, H.P., and Müller, E.: Organosilicon polymers—Synthesis, architecture, reactivity and applications. Appl. Organomet. Chem. 11, 71 (1997).3.0.CO;2-N>CrossRefGoogle Scholar
Siebert, W. and Chujo, Y., eds.: Organoboron mainchain polymers. In Advances in Boron Chemistry, 1st ed. (Royal Society of Chemistry, Cambridge, 1997); p. 518.Google Scholar
Grimes, R.N.: Carborane polymers and dendrimers. In Carboranes, 2nd ed. (Academic Press, Oxford, 2011); p. 1015.Google Scholar
Green, J., Mayes, N., and Cohen, M.S.: Carborane polymers. III. Vinyl carboranes. J. Polym. Sci., Part A: Gen. Pap. 3, 3275 (1965).Google Scholar
Williams, R.E.: Carborane polymers. Pure Appl. Chem. 29, 569583 (1972).Google Scholar
Brown, D.A., Colquhoun, H.M., Daniels, J.A., MacBride, J.A.H., Stephenson, I.R., and Wade, K.: Polymers and ceramics based on icosahedral carboranes. Model studies of the formation and hydrolytic stability of aryl ether, ketone, amide and borane linkages between carborane units. J. Mater. Chem. 2, 793 (1992).Google Scholar
Packirisamy, S.: Decaborane(14)-based polymers. Prog. Polym. Sci. 21, 707 (1996).Google Scholar
Sneddon, L.G.: Boron polymers and materials. In Advances in Boron Chemistry, 1st ed., Sieber, W., ed. (Royal Society of Chemistry, Cambridge, 1997); p. 491.Google Scholar
Sneddon, L.G., Mirabelli, M.G.L., Lynch, A.T., Fazen, P.J., Su, K., and Beck, J.S.: Polymeric precursors to boron based ceramics. Pure Appl. Chem. 63, 407 (2009).Google Scholar
Yisgedu, T.B., Chen, X., Schricker, S., Parquette, J., Meyers, E.A., and Shore, S.G.: Synthesis and characterization of homopolymers and copolymers containing closo-[B12H12]2− boron cage derivatives. Chem. - Eur. J. 15, 2190 (2009).CrossRefGoogle Scholar
Dash, B.P., Satapathy, R., Maguire, J.A., and Hosmane, N.S.: Carborane clusters: Versatile synthetic building blocks for dendritic, nanostructured and polymeric materials. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press, Boca Raton, 2011).Google Scholar
Viñas, C., Núñez, R., and Teixidor, F.: Large molecules containing icosahedral boron clusters designed for potential applications. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press, Boca Raton, 2011).Google Scholar
Allcock, H.R.: Recent developments in polyphosphazene materials science. Curr. Opin. Solid State Mater. Sci. 10, 231 (2006).Google Scholar
Cheng, F. and Jäkle, F.: Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem. 2, 2122 (2011).Google Scholar
Niu, W., O'Sullivan, C., Rambo, B.M., Smith, M.D., and Lavigne, J.J.: Self-repairing polymers: Poly(dioxaborolane)s containing trigonal planar boron. Chem. Commun. 34, 4342 (2005).Google Scholar
Tilford, R.W., Gemmill, W.R., zur Loye, H-C., and Lavigne, J.J.: Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296 (2006).Google Scholar
Tilford, R.W., Mugavero, S.J., Pellechia, P.J., and Lavigne, J.J.: Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741 (2008).CrossRefGoogle ScholarPubMed
Cote, A.P.: Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005).Google Scholar
El-Kaderi, H.M., Hunt, J.R., Mendoza-Cortes, J.L., Cote, A.P., Taylor, R.E., O'Keeffe, M., and Yaghi, O.M.: Designed synthesis of 3D covalent organic frameworks. Science 316, 268 (2007).Google Scholar
Sivaev, I.B., Bregadze, V.I., and Kuznetsov, N.T.: Derivatives of the closo-dodecaborate anion and their application in medicine. Russ. Chem. Bull. 51, 1362 (2002).Google Scholar
Kabbani, R.M.: High yield synthesis of [(C4H9)4N][Ni(η5-C5H5)B6H6]. Polyhedron 15, 1951 (1996).Google Scholar
Makhlouf, J.M., Hough, W.V., and Hefferan, G.T.: Practical synthesis for decahydrodecaborates. Inorg. Chem. 6, 1196 (1967).Google Scholar
Sayles, D.C.: Thermolysis of tetraalkylammonium borohydrides to bis(tetraalkylammonium) decahydrodecaboranes. U.S. Patent No. 4391993 A, July 5, 1983. Google Scholar
Spielvogel, B. and Cook, K.: Method of production of B10H10 2− ammonium salts and methods of production of B18H22. U.S. Patent No. 20050169828 A1, August 4, 2005. Google Scholar
Miller, H.C., Miller, N.E., and Muetterties, E.L.: Chemistry of boranes. XX. Syntheses of polyhedral boranes. Inorg. Chem. 3, 1456 (1964).Google Scholar
Dunks, G.B. and Ordonez, K.P.: A one-step synthesis of tetradecahydroundecaborate (1−) ion from sodium tetrahydroborate. Inorg. Chem. 17, 1514 (1978).Google Scholar
Dunks, G.B., Barker, K., Hedaya, E., Hefner, C., Palmer-Ordonez, K., and Remec, P.: Simplified synthesis of decaborane(14) from sodium tetrahydroborate via tetradecahydroundecaborate(1−) ion. Inorg. Chem. 20, 1692 (1981).Google Scholar
Komura, M., Aono, K., Nagasawa, K., and Sumimoto, S.: A convenient preparation of 10B-enriched B12H11SH2−, an agent for neutron capture therapy. Chem. Express 2, 173 (1987).Google Scholar
Peymann, T., Knobler, C.B., Khan, S.I., and Hawthorne, M.F.: Dodecamethyl-closo-dodecaborate(2−). Inorg. Chem. 40, 1291 (2001).Google Scholar
Peymann, T., Knobler, C., and Hawthorne, M.F.: An unpaired electron incarcerated within an icosahedral borane cage: Synthesis and crystal structure of the blue, air-stable {[closo-B12(CH3)12]}-radical. Chem. Commun. 2039 (1999).Google Scholar
Peymann, T., Herzog, A., Knobler, C.B., and Hawthorne, M.F.: Aromatic polyhedral hydroxyborates: Bridging boron oxides and boron hydrides. Angew. Chem. Int. Ed. 38, 1061 (1999).Google Scholar
Farha, O.K., Julius, R.L., Lee, M.W., Huertas, R.E., Knobler, C.B., and Hawthorne, M.F.: Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12 . J. Am. Chem. Soc. 127, 18243 (2005).Google Scholar
Lee, M.W., Farha, O.K., Hawthorne, M.F., and Hansch, C.H.: Alkoxy derivatives of dodecaborate: Discrete nanomolecular ions with tunable pseudometallic properties. Angew. Chem. Int. Ed. 46, 3018 (2007).Google Scholar
Jalisatgi, S.S., Kulkarni, V.S., Tang, B., Houston, Z.H., Lee, M.W., and Hawthorne, M.F.: A convenient route to diversely substituted icosahedral closomer nanoscaffolds. J. Am. Chem. Soc. 133, 12382 (2011).Google Scholar
Sivaev, I.B., Bregadze, V.I., and Sjöberg, S.: Chemistry of closo-dodecaborate anion [B12H12]2−: A review. Collect. Czech. Chem. Commun. 67, 679 (2002).CrossRefGoogle Scholar
Wiberg, N., Finger, C.M.M., and Polborn, K.: Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetrasilane (t-Bu3Si)4Si4: The first molecular silicon compound with a Si4 tetrahedron. Angew. Chem. Int. Ed. Engl. 32, 1054 (1993).CrossRefGoogle Scholar
Sekiguchi, A., Yatabe, T., Kabuto, C., and Sakurai, H.: Chemistry of organosilicon compounds. 303. The missing hexasilaprismane: Synthesis, x-ray analysis and photochemical reactions. J. Am. Chem. Soc. 115, 5853 (1993).Google Scholar
Furukawa, K., Fujino, M., and Matsumoto, N.: Cubic silicon cluster. Appl. Phys. Lett. 60, 2744 (1992).Google Scholar
Sekiguchi, A., Yatabe, T., Kamatani, H., Kabuto, C., and Sakurai, H.: Chemistry of organosilicon compounds. 293. Preparation, characterization, and crystal structures of octasilacubanes and octagermacubanes. J. Am. Chem. Soc. 114, 6260 (1992).Google Scholar
Matsumoto, H., Higuchi, K., Hoshino, Y., Koike, H., Naoi, Y., and Nagai, Y.: The first octasilacubane system: Synthesis of octakis-(t-butyldimethylsilyl) pentacyclo [4.2.0.02,5.03,8.04,7] octasilane. J. Chem. Soc., Chem. Commun. 16, 1083 (1988).Google Scholar
Voronkov, M.G. and Lavrent'yev, V.I.: Polyhedral oligosilsesquioxanes and their homo derivatives. In Inorganic Ring Systems (Springer, Berlin, 1982); p. 199.Google Scholar
Baney, R.H., Itoh, M., Sakakibara, A., and Suzuki, T.: Silsesquioxanes. Chem. Rev. 95, 1409 (1995).CrossRefGoogle Scholar
Laine, R.M.: Nanobuilding blocks based on the [OSiO1.5] x (x = 6, 8, 10) octasilsesquioxanes. J. Mater. Chem. 15, 3725 (2005).Google Scholar
Laine, R.M. and Roll, M.F.: Polyhedral phenylsilsesquioxanes. Macromolecules 44, 1073 (2011).Google Scholar
Kaim, W., Hosmane, N.S., Záliš, S., Maguire, J.A., and Lipscomb, W.N.: Boron atoms as spin carriers in two- and three-dimensional systems. Angew. Chem. Int. Ed. 48, 5082 (2009).Google Scholar
Poater, J., Solà, M., Viñas, C., and Teixidor, F.: π aromaticity and three-dimensional aromaticity: Two sides of the same coin? Angew. Chem. Int. Ed. 53, 12191 (2014).Google Scholar
Alexandrova, A.N., Boldyrev, A.I., Zhai, H-J., and Wang, L-S.: All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250, 2811 (2006).Google Scholar
Chen, Z. and King, R.B.: Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures. Chem. Rev. 105, 3613 (2005).Google Scholar
King, R.B.: Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem. Rev. 101, 1119 (2001).Google Scholar
von R. Schleyer, P., Subramanian, G., Jiao, H., Najafian, K., and Hofman, M.: Are boron compounds aromatic? An analysis of their magnetic properties. In Advances in Boron Chemistry, 1st ed., Siebert, W., ed. (Royal Society of Chemistry, Cambridge, 1997).Google Scholar
Strauss, S.H.: The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927 (1993).Google Scholar
Hosmane, N.S., Vöge, A., and Gabel, D. eds.: Boron in weakly coordinating anions and ionic liquids. In Boron Science: New Technologies and Applications, 1st ed. (CRC Press, Boca Raton, 2011).Google Scholar
Engesser, T.A., Lichtenthaler, M.R., Schleep, M., and Krossing, I.: Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789 (2016).CrossRefGoogle ScholarPubMed
Pospı́šil, L., King, B.T., and Michl, J.: Voltammetry in benzene using lithium dodecamethylcarba-closo-dodecaborate, LiCB11Me12, as a supporting electrolyte: Reduction of Ag+ . Electrochim. Acta 44, 103 (1998).Google Scholar
Avelar, A., Tham, F.S., and Reed, C.A.: Superacidity of boron acids H2(B12X12)(X = Cl, Br). Angew. Chem. 121, 3543 (2009).Google Scholar
Geis, V., Guttsche, K., Knapp, C., Scherer, H., and Uzun, R.: Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2− . Dalton Trans. 15, 2687 (2009).Google Scholar
Kessler, M., Knapp, C., Sagawe, V., Scherer, H., and Uzun, R.: Synthesis, characterization, and crystal structures of silylium compounds of the weakly coordinating dianion [B12Cl12]2− . Inorg. Chem. 49, 5223 (2010).Google Scholar
Strauss, S.H.: Highly fluorinated closo-borane and -carborane anions. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 44.Google Scholar
Ivanov, S.V., Davis, J.A., Miller, S.M., Anderson, O.P., and Strauss, S.H.: Synthesis and characterization of ammonioundecafluoro-closo-dodecaborates(1−). New superweak anions. Inorg. Chem. 42, 4489 (2003).Google Scholar
Gabel, D., Mai, S., and Perleberg, O.: The formation of boron–carbon bonds to closo-decaborate(2−) and closo-dodecaborate(2−). J. Organomet. Chem. 581, 45 (1999).Google Scholar
Bondarev, O. and Hawthorne, M.F.: Catalytic hydroxylation of [closo-B12H12]2−: Adaptation of the periana reaction to a polyhedral borane. Chem. Commun. 47, 6978 (2011).Google Scholar
Peymann, T., Knobler, C.B., Khan, S.I., and Hawthorne, M.F.: Dodecahydroxy-closo-dodecaborate(2−). J. Am. Chem. Soc. 123, 2182 (2001).Google Scholar
Peymann, T., Knobler, C.B., and Hawthorne, M.F.: A study of the sequential acid-catalyzed hydroxylation of dodecahydro-closo-dodecaborate(2−). Inorg. Chem. 39, 1163 (2000).CrossRefGoogle ScholarPubMed
Knoth, W.H., Miller, H.C., Sauer, J.C., Balthis, J.H., Chia, Y.T., and Muetterties, E.L.: Chemistry of boranes. IX. Halogenation of B10H10 2− and B12H12 2− . Inorg. Chem. 3, 159 (1964).Google Scholar
Boeré, R.T., Derendorf, J., Jenne, C., Kacprzak, S., Keßler, M., Riebau, R., Riedel, S., Roemmele, T.L., Rühle, M., Scherer, H., Vent-Schmidt, T., Warneke, J., and Weber, S.: On the oxidation of the three-dimensional aromatics [B12X12]2− (X = F, Cl, Br, I). Chem. - Eur. J. 20, 4447 (2014).Google Scholar
Gu, W. and Ozerov, O.V.: Exhaustive chlorination of [B12H12]2− without chlorine gas and the use of [B12Cl12]2− as a supporting anion in catalytic hydrodefluorination of aliphatic C−F bonds. Inorg. Chem. 50, 2726 (2011).Google Scholar
Zhang, Y., Liu, J., and Duttwyler, S.: Synthesis and structural characterization of ammonio/hydroxo undecachloro-closo-dodecaborates [B12Cl11NH3]/[B12Cl11OH]2 and their derivatives: Ammonio/hydroxo undecachloro-closo-dodecaborates. Eur. J. Inorg. Chem. 2015, 5158 (2015).Google Scholar
Peryshkov, D.V., Popov, A.A., and Strauss, S.H.: Direct perfluorination of K2B12H12 in acetonitrile occurs at the gas bubble–solution interface and is inhibited by HF. Experimental and DFT study of inhibition by protic acids and soft, polarizable anions. J. Am. Chem. Soc. 131, 18393 (2009).Google Scholar
Ivanov, S.V., Rockwell, J.J., Lupinetti, A.J., Solntsev, K.A., and Strauss, S.H.: Regioselective fluorination of CB11H12 , CB9H10 and B10H10 2− . In Advances in boron chemistry, 1st ed., Siebert, W., ed. (Royal Society of Chemistry, Cambridge, 1997); p. 430.Google Scholar
Knoth, W.H., Miller, H.C., England, D.C., Parshall, G.W., and Muetterties, E.L.: Derivative chemistry of B10H10 2− and B12H12 2− . J. Am. Chem. Soc. 84, 1056 (1962).Google Scholar
Knoth, W.H., Sauer, J.C., England, D.C., Hertler, W.R., and Muetterties, E.L.: Chemistry of boranes. XIX.1 derivative chemistry of B10H10 2− and B12H12 2− . J. Am. Chem. Soc. 86, 3973 (1964).Google Scholar
Tolpin, E.I., Wellum, G.R., and Berley, S.A.: Synthesis and chemistry of mercaptoundecahydro-closo-dodecaborate(2−). Inorg. Chem. 17, 2867 (1978).Google Scholar
Hertler, W.R. and Raasch, M.S.: Chemistry of boranes. XIV. Amination of [B10H10]2− and [B12H12]2− with hydroxylamine-O-sulfonic acid. J. Am. Chem. Soc. 86, 3661 (1964).Google Scholar
Shore, S.G., Hamilton, E.J.M., Kultyshev, R.G., Leung, H.T., and Yisgedu, T.: Syntheses and chemistry of bis- and tris-mercaptoborates. Pure Appl. Chem. 78, 13411347 (2006).Google Scholar
Kultyshev, R.G., Liu, J., Meyers, E.A., and Shore, S.G.: Chemistry of inner sulfonium salts of dodecaborane. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 167.Google Scholar
Hamilton, E.J.M., Leung, H.T., Kultyshev, R.G., Chen, X., Meyers, E.A., and Shore, S.G.: Unusual cationic tris(dimethylsulfide)-substituted closo-boranes: Preparation and characterization of [1,7,9-(Me2S)3-B12H9] BF4 and [1,2,10-(Me2S)3-B10H7] BF4 . Inorg. Chem. 51, 2374 (2012).Google Scholar
Knoth, W.H., Sauer, J.C., Miller, H.C., and Muetterties, E.L.: Diazonium and carbonyl derivatives of polyhedral boranes. J. Am. Chem. Soc. 86, 115 (1964).CrossRefGoogle Scholar
Knoth, W.H., Sauer, J.C., Balthis, J.H., Miller, H.C., and Muetterties, E.L.: Chemistry of boranes. XXX. Carbonyl derivatives of B10H10 2− and B12H12 2− . J. Am. Chem. Soc. 89, 4842 (1967).Google Scholar
Knoth, W.H.: Chemistry of boranes. XXXI. 1,10-Bis(hydroxymethyl)octachlorodecaborate(2−). J. Am. Chem. Soc. 89, 4850 (1967).Google Scholar
Harmon, K.M., Harmon, A.B., and MacDonald, A.A.: Cesium tropenylium nonahydrodecaborate. J. Am. Chem. Soc. 86, 5036 (1964).Google Scholar
Harmon, A.B. and Harmon, K.M.: Ionic organoboranes. II.1 cesium tropenylium undecahydroclovododecaborate. Cage–ring interactions in C7H6B10H9 and C7H6B12H11 ions. J. Am. Chem. Soc. 88, 4093 (1966).Google Scholar
Harmon, K.M., Harmon, A.B., and MacDonald, A.A.: Ionic organoboranes. IV. Preparation and properties of the C7H6B10H9 and C7H6B12H11 hemiousenide ions. J. Am. Chem. Soc. 91, 323 (1969).Google Scholar
Sivaev, I.B., Sjöberg, S., Bregadze, V.I., and Gabel, D.: Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2− . Tetrahedron Lett. 40, 3451 (1999).Google Scholar
Peymann, T., Lork, E., and Gabel, D.: Hydroxoundecahydro-closo-dodecaborate(2−) as a nucleophile. Preparation and structural characterization of O-alkyl and O-acyl derivatives of hydroxoundecahydro-closo-dodecaborate(2−). Inorg. Chem. 35, 1355 (1996).Google Scholar
Semioshkin, A.A., Sivaev, I.B., and Bregadze, V.I.: Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 8, 977 (2008).Google Scholar
Laskova, J., Kozlova, A., Białek-Pietras, M., Studzińska, M., Paradowska, E., Bregadze, V., Leśnikowski, Z.J., and Semioshkin, A.: Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J. Organomet. Chem. 807, 29 (2016).CrossRefGoogle Scholar
Semioshkin, A., Laskova, J., Zhidkova, O., Godovikov, I., Starikova, Z., Bregadze, V., and Gabel, D.: Synthesis and structure of novel closo-dodecaborate-based glycerols. J. Organomet. Chem. 695, 370 (2010).Google Scholar
Sivaev, I.B. and Bregadze, V.I.: Cyclic oxonoum derivatives as an efficient synthetic tool for the modification of polyhedral boron hydrides. In Boron Science: New Technologies and Applications, 1st ed., Hosmane, N.S., ed. (CRC Press, Boca Raton, 2011).Google Scholar
Sivaev, I.B., Sjöberg, S., and Bregadze, V.I.: [C2B10]-[B12] double cage boron compounds—A new approach to the synthesis of water-soluble boron-rich compounds for BNCT. J. Organomet. Chem. 680, 106 (2003).Google Scholar
Sivaev, I.B., Bregadze, V.I., and Sjöberg, S.: Synthesis of O-bonded derivatives of closo-dodecaborate anion. [B12]-[C2B10] double cage boron compounds—A new approach to synthesis of BNCT agents. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 135.Google Scholar
Pushechnikov, A., Jalisatgi, S.S., and Hawthorne, M.F.: Dendritic closomers: Novel spherical hybrid dendrimers. Chem. Commun. 49, 3579 (2013).Google Scholar
Kueffer, P.J., Maitz, C.A., Khan, A.A., Schuster, S.A., Shlyakhtina, N.I., Jalisatgi, S.S., Brockman, J.D., Nigg, D.W., and Hawthorne, M.F.: Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc. Natl. Acad. Sci. 110, 6512 (2013).Google Scholar
Hawthorne, M.F. and Pushechnikov, A.: Polyhedral borane derivatives: Unique and versatile structural motifs. Pure Appl. Chem. 84, 22792288 (2012).Google Scholar
Ma, L., Hamdi, J., Wong, F., and Hawthorne, M.F.: Closomers of high boron content: Synthesis, characterization, and potential application as unimolecular nanoparticle delivery vehicles for boron neutron capture therapy. Inorg. Chem. 45, 278 (2006).Google Scholar
Li, T., Jalisatgi, S.S., Bayer, M.J., Maderna, A., Khan, S.I., and Hawthorne, M.F.: Organic syntheses on an icosahedral borane surface: Closomer structures with twelvefold functionality. J. Am. Chem. Soc. 127, 17832 (2005).Google Scholar
Bayer, M.J. and Hawthorne, M.F.: An improved method for the synthesis of [closo-B12(OH)12]2− . Inorg. Chem. 43, 2018 (2004).Google Scholar
Morris, J.H., Gysling, H.J., and Reed, D.: Electrochemistry of boron compounds. Chem. Rev. 85, 51 (1985).Google Scholar
Littger, R., Taylor, J., Rudd, G., Newlon, A., Allis, D., Kotiah, S., and Spencer, J.T.: Thermal, photochemical, and redox reactions of borane and metallaborane clusters with applications to molecular electronics. In Contemporary Boron Chemistry, Davidson, M.G., Wade, K., Marder, T.B., and Hughes, A.K., eds. (Royal Society of Chemistry, Cambridge, 2007); p. 67.Google Scholar
Lee, T.B. and McKee, M.L.: Redox energetics of hypercloso boron hydrides B n H n (n = 6–13) and B12X12 (X = F, Cl, OH, and CH3). Inorg. Chem. 51, 4205 (2012).Google Scholar
Vespalec, R.: Novel analytical subject matter: Cluster compounds of boron. In Xxxiii Mod. Elektrochem. Metody, Navrátil Tomáš, Fojta Miroslav, and Karolina Pecková, eds. (Lenka Srsenová, Ústí nad Labem, 2013); p. 234.Google Scholar
Wixtrom, A.I., Shao, Y., Jung, D., Machan, C.W., Kevork, S.N., Qian, E.A., Axtell, J.C., Khan, S.I., Kubiak, C.P., and Spokoyny, A.M.: Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions. Inorg. Chem. 3, 711 (2016).Google Scholar
King, B.T., Zharov, I., and Michl, J.: Alkylated carborane anions and radicals. Chem. Innov. 31, 2331 (2001).Google Scholar
Valášek, M., Štursa, J., Pohl, R., and Michl, J.: Microwave-assisted alkylation of [CB11H12] and related anions. Inorg. Chem. 49, 10247 (2010).Google Scholar
Boeré, R.T., Kacprzak, S., Keßler, M., Knapp, C., Riebau, R., Riedel, S., Roemmele, T.L., Rühle, M., Scherer, H., and Weber, S.: Oxidation of closo-[B12Cl12]2− to the radical anion [B12Cl12] and to neutral B12Cl12 . Angew. Chem. Int. Ed. 50, 549 (2011).Google Scholar
Dey, A.N. and Miller, J.: Primary Li/SOCl2 cells VII. Effect of Li2B10Cl10 and Li2B12Cl12 electrolyte salts on the performance. J. Electrochem. Soc. 126, 1445 (1979).CrossRefGoogle Scholar
Johnson, J.W. and Whittingham, M.S.: Lithium closoboranes as electrolytes in solid cathode lithium cells. J. Electrochem. Soc. 127, 1653 (1980).Google Scholar
Johnson, J.W. and Thompson, A.H.: Lithium closoboranes II. Stable nonaqueous electrolytes for elevated temperature lithium cells. J. Electrochem. Soc. 128, 932 (1981).Google Scholar
Johnson, J.W. and Brody, J.F.: Lithium closoborane electrolytes III. Preparation and characterization. J. Electrochem. Soc. 129, 2213 (1982).Google Scholar
Ionica-Bousquet, C.M., Muñoz-Rojas, D., Casteel, W.J., Pearlstein, R.M., Kumar, G.G., Pez, G.P., and Palacín, M.R.: Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li4Ti5O12 supercapacitors. J. Power Sources 196, 1626 (2011).Google Scholar
Ivanov, S.V., Casteel, W.J. Jr., Pez, G.P., and Ulman, M.: Polyfluorinated boron cluster anions for lithium electrolytes. U.S. Patent No. 7311993 B2, December 25, 2007. Google Scholar
Vogel, C. and Meier-Haack, J.: Preparation of ion-exchange materials and membranes. Desalination 342, 156 (2014).Google Scholar
Winter, M. and Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245 (2004).Google Scholar
Quartarone, E. and Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).Google Scholar
Perry, M.L. and Weber, A.Z.: Advanced redox-flow batteries: A perspective. J. Electrochem. Soc. 163, A5064 (2016).Google Scholar
Soloveichik, G.L.: Flow Batteries: Current status and trends. Chem. Rev. 115, 11533 (2015).Google Scholar
Corriu, R.J.P.: Ceramics and nanostructures from molecular precursors. Angew. Chem. Int. Ed. 39, 1376 (2000).Google Scholar
Colombo, P., Mera, G., Riedel, R., and Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics: Polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1805 (2010).Google Scholar
Li, D., McCann, J.T., Xia, Y., and Marquez, M.: Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89, 1861 (2006).Google Scholar
Bakker, E.: Electrochemical sensors. Anal. Chem. 76, 3285 (2004).Google Scholar
Bobacka, J.: Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18, 7 (2006).Google Scholar
Udovic, T.J., Matsuo, M., Unemoto, A., Verdal, N., Stavila, V., Skripov, A.V., Rush, J.J., Takamura, H., and Orimo, S.: Sodium superionic conduction in Na2B12H12 . Chem. Commun. 50, 3750 (2014).Google Scholar
Tang, W.S., Udovic, T.J., and Stavila, V.: Altering the structural properties of A2B12H12 compounds via cation and anion modifications. J. Alloys Compd. 645(S1), S200 (2015).Google Scholar
Peryshkov, D.V., Popov, A.A., and Strauss, S.H.: Latent porosity in potassium dodecafluoro-closo-dodecaborate(2−). Structures and rapid room temperature interconversions of crystalline K2B12F12, K2(H2O)2B12F12, and K2(H2O)4B12F12 in the presence of water vapor. J. Am. Chem. Soc. 132, 13902 (2010).Google Scholar
Schmidt-Rohr, K. and Chen, Q.: Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75 (2008).Google Scholar
Jelen, F., Olejniczak, A.B., Kourilova, A., Lesnikowski, Z.J., and Palecek, E.: Electrochemical DNA detection based on the polyhedral boron cluster label. Anal. Chem. 81, 840 (2009).Google Scholar
Hvastkovs, E.G. and Buttry, D.A.: Recent advances in electrochemical DNA hybridization sensors. Analyst 135, 1817 (2010).Google Scholar
Muetterties, E.L., Balthis, J.H., Chia, Y.T., Knoth, W.H., and Miller, H.C.: Chemistry of boranes. VIII. Salts and acids of B10H10 2− and B12H12 2− . Inorg. Chem. 3, 444 (1964).Google Scholar
Hawthorne, M.F.: New horizons for therapy based on the boron neutron capture reaction. Mol. Med. Today 4, 174 (1998).Google Scholar
Hosmane, N.S., Yinghuai, Z., Maguire, J.A., Hosmane, S.N., and Chakrabarti, A.: Boron nanostructures—From materials to cancer therapy: An account. Main Group Chem. 9, 153 (2010).Google Scholar
Satapathy, R., Dash, B.P., Mahanta, C.S., Swain, B.R., Jena, B.B., and Hosmane, N.S.: Glycoconjugates of polyhedral boron clusters. J. Organomet. Chem. 798, 13 (2015).Google Scholar
Hawthorne, M.F.: Carborane chemistry at work and play. In Advances in Boron Chemistry, 1st ed., Siebert, W., ed. (Royal Society of Chemistry, Cambridge, 1997); p. 261.Google Scholar
Feakes, D.A., Shelly, K., Knobler, C.B., and Hawthorne, M.F.: Na3[B20H17NH3]: Synthesis and liposomal delivery to murine tumors. Proc. Natl. Acad. Sci. 91, 3029 (1994).Google Scholar
Qin, Y. and Bakker, E.: A copolymerized dodecacarborane anion as covalently attached cation exchanger in ion-selective sensors. Anal. Chem. 75, 6002 (2003).Google Scholar
Fojt, L., Fojta, M., Grüner, B., and Vespalec, R.: Electrochemistry of closo-dodecaborate dianion and its simple exo-skeletal derivatives at carbon electrodes in aqueous phosphate buffers. J. Electroanal. Chem. 707, 38 (2013).Google Scholar
Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., and Zhou, Y., eds.: Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, 1st ed. (Wiley-American Ceramic Society, Hoboken, 2014).Google Scholar
Wuchina, E.J., Opila, E., Opeka, M., Fahrenholtz, W.G., and Talmy, I.G.: UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Interface 2007, 30 (2007).Google Scholar
Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).Google Scholar
Hill, M.L.: Materials for small radius leading edges for hypersonic vehicles. J. Spacecr. Rockets 5, 55 (1968).Google Scholar
Balakrishnarajan, M.M., Pancharatna, P.D., and Hoffmann, R.: Structure and bonding in boron carbide: The invincibility of imperfections. New J. Chem. 31, 473 (2007).CrossRefGoogle Scholar
Schmirgeld, L., Zuppiroli, L., Brunel, M., Delafon, J., and Templier, C.: Ion implantations in boron: Remarkable stability of covalent structures based on icosahedra. In Boron Rich Solids, Vol. 231, Emin, D., Aselage, T., Beckel, C.L., Howard, I.A., and Wood, C., eds. (American Institute of Physics, New York, 1990); p. 630.Google Scholar
Schwab, S.T., Stewart, C.A., Dudeck, K.W., Kozmina, S.M., Katz, J.D., Bartram, B., Wuchina, E.J., Kroenke, W.J., and Courtin, G.: Polymeric precursors to refractory metal borides. J. Mater. Sci. 39, 6051 (2004).Google Scholar
Kokado, K. and Chujo, Y.: Polymer reaction of poly(p-phenylene-ethynylene) by addition of decaborane: Modulation of luminescence and heat resistance. Polym. J. 42, 363 (2010).Google Scholar
Su, K. and Sneddon, L.G.: Polymer-precursor routes to metal borides: Synthesis of titanium boride (TiB2) and zirconium boride (ZrB2). Chem. Mater. 3, 10 (1991).Google Scholar
Su, K. and Sneddon, L.G.: A polymer precursor route to metal borides. Chem. Mater. 5, 1659 (1993).Google Scholar
Pender, M.J., Carroll, P.J., and Sneddon, L.G.: Transition-metal-promoted reactions of boron hydrides. 17. Titanium-catalyzed decaborane-olefin hydroborations. J. Am. Chem. Soc. 123, 12222 (2001).Google Scholar
Wei, X., Carroll, P.J., and Sneddon, L.G.: New routes to organodecaborane polymers via ruthenium-catalyzed ring-opening metathesis polymerization. Organometallics 23, 163 (2004).Google Scholar
Welna, D.T., Bender, J.D., Wei, X., Sneddon, L.G., and Allcock, H.R.: Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 17, 859 (2005).Google Scholar
Sneddon, L.G., Pender, M.J., Forsthoefel, K.M., Kusari, U., and Wei, X.: Design, syntheses and applications of chemical precursors to advanced ceramic materials in nanostructured forms. J. Eur. Ceram. Soc. 25, 91 (2005).Google Scholar
Guron, M.M., Kim, M.J., and Sneddon, L.G.: A simple polymeric precursor strategy for the syntheses of complex zirconium and hafnium-based ultra high-temperature silicon–carbide composite ceramics. J. Am. Ceram. Soc. 91, 1412 (2008).Google Scholar
Kher, S.S., Tan, Y., and Spencer, J.T.: Chemical vapor deposition of metal borides, 4: The application of polyhedral boron clusters to the chemical vapor deposition formation of gadolinium boride hin-film materials. Appl. Organomet. Chem. 10, 297 (1996).Google Scholar
Glass, J.A., Kher, S.S., Tan, Y., and Spencer, J.T.: The chemical vapor deposition of metal boride thin films from polyhedral cluster species. In Inorganic Materials Synthesis, Vol. 727, American Chemical Society, 1999; p. 130.Google Scholar
Romero, J.V.: A study on the formation of solid state nanoscale materials using polyhedral borane compounds. Ph.D., Syracuse University, United States, New York, 2008.Google Scholar
Itoh, H., Tsuzuki, Y., Yogo, T., and Naka, S.: Synthesis of cerium and gadolinium borides using boron cage compounds as a boron source. Mater. Res. Bull. 22, 1259 (1987).Google Scholar
Panda, M.: Synthesis and Characterization of Alkali Metal Borides and closo-Hydroborates. Ph.D dissertation, University of Hamburg, Hamburg, 2006.Google Scholar
Hoekstra, H.R. and Katz, J.J.: The preparation and properties of the group IV-B metal borohydrides. J. Am. Chem. Soc. 71, 2488 (1949).Google Scholar
Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S.: Titanium, zirconium, and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films. J. Am. Chem. Soc. 110, 1643 (1988).Google Scholar
Wayda, A.L., Schneemeyer, L.F., and Opila, R.L.: Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4). Appl. Phys. Lett. 53, 361 (1988).Google Scholar
Rice, G.W. and Woodin, R.L.: Zirconium borohydride as a zirconium boride precursor. J. Am. Ceram. Soc. 71, C-181C-183 (1988).Google Scholar
Sung, J., Goedde, D.M., Girolami, G.S., and Abelson, J.R.: Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics. J. Appl. Phys. 91, 3904 (2002).Google Scholar
Jayaraman, S., Yang, Y., Kim, D.Y., Girolami, G.S., and Abelson, J.R.: Hafnium diboride thin films by chemical vapor deposition from a single source precursor. J. Vac. Sci. Technol., A 23, 1619 (2005).Google Scholar
Jayaraman, S., Klein, E.J., Yang, Y., Kim, D.Y., Girolami, G.S., and Abelson, J.R.: Chromium diboride thin films by low temperature chemical vapor deposition. J. Vac. Sci. Technol., A 23, 631 (2005).Google Scholar
Fujii, H. and Ozawa, K.: Critical temperature and carbon substitution in MgB2 preparted through the decomposition of Mg(BH4)2 . Supercond. Sci. Technol. 23, 125012 (2010).Google Scholar
Fujii, H. and Ozawa, K.: Superconducting properties of PIT-processed MgB2 tapes using Mg(BH4)2 precursor. Supercond. Sci. Technol. 24, 095009 (2011).Google Scholar
Gallagher, M.K., Rhine, W.E., and Bowen, H.K.: Low-temperature route to high-purity titanium, zirconium and hafnium diboride powders and films. In Ultrastructure processing of advanced ceramics (John Wiley & Sons, Inc., New York, 1988); p. 901.Google Scholar
Tebbe, F.N. and Baker, R.T.: Borides and boride precursors deposited from solution, U.S. Patent No. 5364607 A, November 15, 1994. Google Scholar
Bykov, A.Y., Zhizhin, K.Y., and Kuznetsov, N.T.: The chemistry of the octahydrotriborate anion [B3H8] . Russ. J. Inorg. Chem. 59, 1539 (2014).Google Scholar
Ryschlewitsch, G.E., Nainan, K.C., Miller, S.R., Todd, L.J., Dewkett, W.J., Grace, M., Beall, H., Hawthorne, M.F., and Leyden, R.: Octahydrotriborate (1−) ([B3H8]) salts. In Inorganic Syntheses, Vol. 15, Parshall, G.W., ed. (John Wiley & Sons, Inc., New York, 1974); p. 111.Google Scholar
Goedde, D.M. and Girolami, G.S.: A new class of CVD precursors to metal borides: Cr(B3H8)2 and related octahydrotriborate complexes. J. Am. Chem. Soc. 126, 12230 (2004).Google Scholar
Goedde, D.M., Windler, G.K., and Girolami, G.S.: Synthesis and characterization of the homoleptic octahydrotriborate complex Cr(B3H8)2 and its Lewis base adducts. Inorg. Chem. 46, 2814 (2007).Google Scholar
Kim, D.Y., Yang, Y., Abelson, J.R., and Girolami, G.S.: Volatile magnesium octahydrotriborate complexes as potential CVD precursors to MgB2. Synthesis and characterization of Mg(B3H8)2 and its etherates. Inorg. Chem. 46, 9060 (2007).Google Scholar
Kim, D.Y., You, Y., and Girolami, G.S.: Synthesis and crystal structures of two (cyclopentadienyl)titanium(III) hydroborate complexes, [Cp∗TiCl(BH4)]2 and Cp2Ti(B3H8). J. Organomet. Chem. 693, 981 (2008).Google Scholar
Huang, Z., Chen, X., Yisgedu, T., Meyers, E.A., Shore, S.G., and Zhao, J-C.: Ammonium octahydrotriborate (NH4B3H8): New synthesis, structure, and hydrolytic hydrogen release. Inorg. Chem. 50, 3738 (2011).Google Scholar
Van, N-D., Kleeberg, F.M., and Schleid, T.: Syntheses, crystal structures, and properties of the isotypic pair [Cr(H2O)6]2[B12H12]3·15H2O and [In(H2O)6]2[B12H12]3·15H2O. Z. Anorg. Allg. Chem. 641, 2484 (2015).Google Scholar
Chen, X., Lingam, H.K., Huang, Z., Yisgedu, T., Zhao, J-C., and Shore, S.G.: Thermal decomposition behavior of hydrated magnesium dodecahydrododecaborates. J. Phys. Chem. Lett. 1, 201 (2010).Google Scholar
Huang, Z., King, G., Chen, X., Hoy, J., Yisgedu, T., Lingam, H.K., Shore, S.G., Woodward, P.M., and Zhao, J-C.: A simple and efficient way to synthesize unsolvated sodium octahydrotriborate. Inorg. Chem. 49, 8185 (2010).Google Scholar
Dunbar, A.C., Macor, J.A., and Girolami, G.S.: Synthesis and single crystal structure of sodium octahydrotriborate, NaB3H8 . Inorg. Chem. 53, 822 (2014).Google Scholar
Cesium (CAS Number 12008-75-2): Strem Product Catalog [Online]. Available at: http://www.strem.com/catalog/v/55-1800/14/cesium_12008-75-2 (accessed May 24, 2016).Google Scholar
Hansen, B.R.S., Paskevicius, M., Li, H-W., Akiba, E., and Jensen, T.R.: Metal boranes: Progress and applications. Coord. Chem. Rev., doi:10.1016/j.ccr.2015.12.003 (2016).Google Scholar
Bykov, A.Y., Mal'tseva, N.N., Generalova, N.B., Zhizhin, K.Y., and Kuznetsov, N.T.: Reactions of sodium tetrahydroborate with alkyl and aryl halides: A new approach to the synthesis of B3H8 and B12H12 2− anions. Russ. J. Inorg. Chem. 58, 1321 (2013).Google Scholar
Ellis, I.A., Gaines, D.F., and Schaeffer, R.: A convenient preparation of B12H12 2− salts. J. Am. Chem. Soc. 85, 3885 (1963).Google Scholar
Klanberg, F. and Muetterties, E.L.: Chemistry of boranes. XXVII. New polyhedral borane anions, B9H9 2− and B11H11 2− . Inorg. Chem. 5, 1955 (1966).Google Scholar
Agafonov, A.V., Solntsev, K.A., Vinitskii, D.M., and Kuznetsov, N.T.: The synthesis of lower polyhedral hydroborate anions. Russ. J. Inorg. Chem. 27, 1697 (1982).Google Scholar
Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., and Hyde, E.K.: Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J. Am. Chem. Soc. 75, 215 (1953).Google Scholar
Mikheeva, V.I. and Breitsis, V.B.: The 0° solubility isotherm for sodium borohydride and sodium hydroxide in water. Dokl. Akad. Nauk SSSR 131, 1349 (1960).Google Scholar
Pylypko, S., Zadick, A., Chatenet, M., Miele, P., Cretin, M., and Demirci, U.B.: A preliminary study of sodium octahydrotriborate NaB3H8 as potential anodic fuel of direct liquid fuel cell. J. Power Sources 286, 10 (2015).Google Scholar
Titov, L.V. and Petrovskii, P.V.: Synthesis and some properties of calcium tetradecahydroundecaborate Ca(B11H14)2⋯4Dg (Dg = diglyme). Russ. J. Inorg. Chem. 56, 1032 (2011).Google Scholar
Garroni, S., Milanese, C., Pottmaier, D., Mulas, G., Nolis, P., Girella, A., Caputo, R., Olid, D., Teixidor, F., Baricco, M., Marini, A., Suriñach, S., and Baró, M.D.: Experimental evidence of Na2[B12H12] and Na formation in the desorption pathway of the 2NaBH4 + MgH2 system. J. Phys. Chem. C 115, 16664 (2011).Google Scholar
Pitt, M.P., Paskevicius, M., Brown, D.H., Sheppard, D.A., and Buckley, C.E.: Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4 . J. Am. Chem. Soc. 135, 6930 (2013).Google Scholar
Teprovich, J.A., Colón-Mercado, H., Ii, A.L.W., Ward, P.A., Greenway, S., Missimer, D.M., Hartman, H., Velten, J., Christian, J.H., and Zidan, R.: Bi-functional Li2B12H12 for energy storage and conversion applications: Solid-state electrolyte and luminescent down-conversion dye. J. Mater. Chem. A 3, 22853 (2015).Google Scholar
Franken, A., King, B.T., Rudolph, J., Rao, P., Noll, B.C., and Michl, J.: Preparation of [closo-CB11H12] by dichlorocarbene insertion into [nido-B11H14] . Collect. Czech. Chem. Commun. 66, 1238 (2001).Google Scholar
Körbe, S., Sowers, D.B., Franken, A., and Michl, J.: Preparation of 1-p-halophenyl and 1-p-biphenylyl substituted monocarbadodecaborate anions [closo-1-Ar-CB11H11] by insertion of arylhalocarbenes into [nido-B11H14] . Inorg. Chem. 43, 8158 (2004).Google Scholar