Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:51:04.035Z Has data issue: false hasContentIssue false

Ion beam mixing of U-based bilayers

Published online by Cambridge University Press:  31 January 2011

François Rossi
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Cohen
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. Olsen
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J.R. Tesmer
Affiliation:
Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Chuck Egert
Affiliation:
Martin Marietta Y12 Plant, Oak Ridge, Tennessee 37831
Get access

Abstract

Bilayer samples of U/Al, U/Ti, U/Si, and U/C have been ion beam mixed with 400 keV Ar and U/Al with Xe ions at doses from 2 × 1015 to 1 × 1017 ions/cm2. Mixing experiments were performed at various temperatures between 77 and 420 K. The amount of interfacial mixing, 4Dt, follows a linear dose dependence below a critical temperature, depending on the system studied. Below this temperature, the mixing efficiency, defined as ∂(4Dt)Φ where 4Dt is the mixing and Φ is the dose, is temperature independent. Its value, as well as the value of the transition temperature, agrees well with the thermodynamical model of chemically biased diffusion in a thermal spike for the four systems tested. The transition between the thermal spike regime and the temperature enhanced mixing regime was interpreted on the basis of an intracascade mechanism. The formation of an intermetallic compound in the U/Al system was detected and interpreted on a qualitative basis by crystallographic considerations.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W. L., Cheng, Y. T., van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B 7/8, 657 (1985).Google Scholar
2.Cheng, Y. T., Ph.D. Thesis, California Institute of Technology (1987).Google Scholar
3.Doolittle, L., Nucl. Instrum. Methods B9, 15, 227 (1986).; L. Doolittle, Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
4.Nastasi, M., Hung, L. S., and Mayer, J. W., Appl. Phys. Lett. 43 (9), 831 (1983).CrossRefGoogle Scholar
5.Chu, W. K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).Google Scholar
6.Rehn, L. E. and Okamoto, P. R., Nucl. Instrum. Methods B39, 104 (1989).CrossRefGoogle Scholar
7.Diaz de la Rubia, T., Averback, R. S., Benedek, R., and King, W. E., Phys. Rev. Lett. 59, 17, 1930 (1987).CrossRefGoogle Scholar
8.Diaz de la Rubia, T., Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).CrossRefGoogle Scholar
9.Hsieh, H., Diaz de la Rubia, T., and Averback, R. S., Phys. Rev. B 40, 14, 9986 (1989).Google Scholar
10.Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980). See also J. P. Biersack, Nucl. Instrum. Methods 182/183, 199 (1981).CrossRefGoogle Scholar
11.Ma, E., Workman, T. W., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 54 (5), 413 (1989).Google Scholar
12.Sigmund, P. and Marti, A. Gras, Nucl. Instrum. Methods 182/183, 25 (1981).Google Scholar
13.Kim, S. J., Nicolet, M. A., Averback, R. S., and Peak, D., Phys. Rev., B 37 1, 38 (1988).Google Scholar
14.Miedema, A. R., Philips Tech. Rev. 36, 217 (1976).Google Scholar
15.Nastasi, M., Tesmer, J., and Hirvonen, J-P., in Materials Modification and Growth Using Ion Beams, edited by Gibson, U., White, A. E., and Pronko, P. P. (Mater. Res. Soc. Symp. Proc. 93, Pittsburgh, PA, 1987), p. 215.Google Scholar
16.Kittel, C., Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), p. 74.Google Scholar
17.Averback, R., Peak, D., and Thompson, M., Appl. Phys. A39, 5964 (1986).Google Scholar
18.Rossi, F., Parkin, D., and Nastasi, M., J. Mater. Res. 3, 137 (1989).Google Scholar
19.Cheng, Y. T., Nicolet, M. A., and Johnson, W. L., Phys. Rev. Lett. 58, 2083 (1987).CrossRefGoogle Scholar
20.Winterbon, K. B., Urbassek, H. M., Sigmund, P., and Marti, A. Gras, Phys. Scr. 36, 689 (1987).Google Scholar
21.Cheng, Y. T., Zhao, X. A., Banwell, T. C., Workman, T. W., Nicolet, M-A., and Johnson, W., J. Appl. Phys. 60 (7), 2615 (1987).Google Scholar
22.Sizmann, , J. Nucl. Mater. 69, 70, 386 (1968).Google Scholar
23.Rossi, F. and Nastasi, M. (submitted for publication in J. Appl. Phys.).Google Scholar
24.Rossi, F. and Doan, N. V. (to be published).Google Scholar
25.Hansen, M. and Anderko, K., Constitution of Binary Alloys. 2nd ed. (McGraw-Hill, 1958).CrossRefGoogle Scholar
26.Shunk, F. A., Constitution of Binary Alloys, 2nd suppl. (McGraw-Hill, 1985).Google Scholar
27.Vineyard, G. H., Radiat. Eff. 29, 245 (1976).Google Scholar