Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:38:44.457Z Has data issue: false hasContentIssue false

Ion beam mixing of La(OH)3/Cu bilayers

Published online by Cambridge University Press:  31 January 2011

J. P. Mathevet
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, Bât. 108, F-91405 Orsay Campus, France
A. Traverse
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, Bât. 108, F-91405 Orsay Campus, France
J. Chaumont
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, Bât. 108, F-91405 Orsay Campus, France
M. Gasgnier
Affiliation:
UPR 210 CNRS Bellevue, 1 Place A. Briand, F-92195 Meudon Cedex, France
S. Megtert
Affiliation:
Laboratoire de Physique des Solides, Bât, 510, Université Paris XI, F-91405 Orsay Cedex, France
Get access

Abstract

The evolution of atomic composition, atomic depth distribution, and structural states of La(OH)3/Cu bilayers prepared by electron gun evaporation and submitted to ion beam irradiation is described. Chemical reactivity of La with O and H is evidenced in the initially deposited La/Cu bilayer, despite the fact that the pure La layer is coated with a thick Cu layer. Ion beam mixing with energetic Au ions, at 300 K and 700 K, results in breaking down the La–O–H bonds, while Cu atoms are knocked into the layer. There is a depth redistribution of the different atomic species, with formation of nonidentified phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Traverse, A., Le Boité, M. G., and Martin, G., Europhysics Lett. 8, 633 (1989).CrossRefGoogle Scholar
2Johnson, W. L., Cheng, Y. T., Van Rossum, M., and Nicolet, M. A., Nucl. Instrum. Methods B7/8, 657 (1985).CrossRefGoogle Scholar
3White, A. E., Short, K. T., Garno, J. P., Valles, J. M., Dynes, R. C., Schneemeyer, L. F., Waszczak, J., Levi, A. F. J., Anzlowar, M., and Baldwin, K. W., Nucl. Instrum. Methods B37/38, 923 (1989).CrossRefGoogle Scholar
4Rauschenbach, B. and Hohmuth, K., Nucl. Instrum. Methods B39, 648 (1989); M. Nastasi, J. R.Tesmer, M. G. Hollander, J. F. Smith, and C. J. Maggiore, Appl. Phys. Lett. 52, 1729 (1988).CrossRefGoogle Scholar
5Smithells Metals Reference Book, edited by Brandes, E. A. (Butterworth's, London, 1983), 6th ed.Google Scholar
6Cottereau, E., Camplan, J., Chaumont, J., and Meunier, R., Mater. Sci. Eng. B2, 217 (1989).CrossRefGoogle Scholar
7Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
8Ion Handbook for Materials Analysis, edited by Mayer, J. W. and Rimini, E. (Academic Press, New York, 1977).Google Scholar
9Maurel, B. and Amsel, G., Nucl. Intrum. Methods 218, 159 (1983).CrossRefGoogle Scholar
10Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
11Gasgnier, M., Phys. Status Solidi A 57, 11 (1980).CrossRefGoogle Scholar
12Li, Z. Z., Perrin, A., Padiou, J., and Sergent, M., Superconductor Science and Technology 2, 230 (1989).CrossRefGoogle Scholar
13Kubaschewski, O. and Evans, E., La Thermochimie en Métallurgie, edited by Gauthier-Villars (1964).Google Scholar
14Mehrotra, P. N., Chandrashekar, G. V., Rao, C. N. R., and Suffarao, E. C., Trans. Faraday Society 62, 3586 (1966).CrossRefGoogle Scholar
15 ASTM File 37–487.Google Scholar
16Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, I and II (Pergamon Press, 1986).Google Scholar
17 ASTM File 30–487.Google Scholar
18 ASTM File 35–1403.Google Scholar
19 ASTM File 25–291.Google Scholar
20 ASTM File 37–1345.Google Scholar
21Daou, J. N., Nicolas, M., Burger, J. P., Vajda, P., Lesueur, J., and Dumoulin, L., J. Less-Common Metals 151, 183 (1989).CrossRefGoogle Scholar