Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:40:42.505Z Has data issue: false hasContentIssue false

Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations

Published online by Cambridge University Press:  31 January 2011

S.P. Chen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A.F. Voter
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.C. Albers
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A.M. Boring
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P.J. Hay
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A series of simulations has been performed on grain boundaries in Ni and Ni3Al with and without boron doping using embedded atom-style potentials. A new procedure of obtaining “reference” data for boron related properties from electronic band structure calculations has been employed. Good agreement with existing experimental structural and energetic determinations was obtained. Boron is found to segregate more strongly to grain boundaries than to free surfaces. Adding boron to grain boundaries in Ni and Ni3Al increases their cohesive strength and the work required to pull apart the boundary. This effect is much more dramatic for Ni-rich boundaries than for stoichiometric or Al-rich boundaries. In some Ni-rich cases, adding boron increases the cohesive strength of the boundary to such an extent that the boundaries become stronger than the bulk. Bulk Ni3Al samples that are Ni-rich produce Ni-rich grain boundaries. The best cohesive properties of Ni3Al grain boundaries are obtained when the boundary is Ni saturated and also with boron present. Boron and nickel are found to cosegregate to the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Grain Boundary Structure and Properties, edited by Chadwick, G.A. and Smith, D. A. (Academic Press, New York, 1976).Google Scholar
2Grain Boundary Structure and Kinetics, edited by Balluffi, R.W. (ASM, Metals Park, OH, 1980).Google Scholar
3Chen, S.P., Voter, A.F., and Srolovitz, D. J., Scripta Metall. 20, 1389 (1986).CrossRefGoogle Scholar
4Chen, S.P., Voter, A.F., and Srolovitz, D.J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.Google Scholar
5Merrick, H.R., Metall. Trans. A 7A, 505 (1976).CrossRefGoogle Scholar
6Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley and Sons, New York, 1967); N. S. Stoloff and R. G. Davis, Prog. In Mater. Sci. 13, 1 (1966).Google Scholar
7Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
8High-Temperature Ordered Intermetallic Alloys (Proc. Mater. Res. Soc. Symp.), edited by Koch, C. C., Liu, C.T., and Stoloff, N. S. (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39.Google Scholar
9High-Temperature Ordered Intermetallic Alloys II (Proc. Mater. Res. Soc. Symp.), edited by Stoloff, N. S., Koch, C. C., Liu, C.T., and Izumi, O. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81.Google Scholar
10Liu, C.T., White, C.L., and Horton, J.A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
11White, C.L., Padgett, P.A., Liu, C.T., and Yalisov, S.M., Scripta Metall. 18, 1417 (1985).CrossRefGoogle Scholar
12Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., Scripta Metall. 23, 217 (1989).CrossRefGoogle Scholar
13Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 122, p. 355.Google Scholar
14Chen, S. P., Voter, A. F., and Srolovitz, D. J., J. de Phys. C5, 157 (1988).Google Scholar
15Voter, A. F. and Chen, S. P. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.Google Scholar
16Chen, S. P., Srolovitz, D. J., and Voter, A. F., J. Mater. Res. 4, 62 (1989).CrossRefGoogle Scholar
17Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
18Andersen, O. K., Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
19Skriver, H.L., The LMTO Method (Springer, Berlin, 1984).CrossRefGoogle Scholar
20Christensen, N.E., Int. J. Quant. Chem. 25, 233 (1984).CrossRefGoogle Scholar
21Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986), and references therein.CrossRefGoogle Scholar
22Voter, A. F. (to be published).Google Scholar
23Chen, S. P., Voter, A. F., and Srolovitz, D. J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 45.Google Scholar
24Chen, S. P., Voter, A. F., and Srolovitz, D. J., Phys. Rev. Lett. 57, 1308 (1986).CrossRefGoogle Scholar
25Chen, S. P., Voter, A. F., and Srolovitz, D. J., Characterization of Defects in Materials (Proc. Mater. Res. Soc. Symp.), edited by Siegel, R.W., Sinclair, R., and Weertman, J. R. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 175.Google Scholar
26Finnis, M.W. and Sinclair, J. E., Phil. Mag. A50, 45 (1984).CrossRefGoogle Scholar
27Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
28Foiles, S. M. and Daw, M. S., J. of Metals 39, 39 (1987).Google Scholar
29Sullenger, D. B. and Kennard, C. H. L., Sci. Am. 215, 96 (1966).CrossRefGoogle Scholar
30Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
31Foiles, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
32Stoloff, N.S., p. 3 in Ref. 8.Google Scholar
33Taub, A.I., Briant, C.L., Huang, S.C., Chang, K-M., and Jackson, M.R., Scripta Metall. 20, 129 (1986).CrossRefGoogle Scholar
34Huang, S.C., Briant, C.L., Chang, K-M., Taub, A.I., and Hall, E.L., J. Mater. Res. 1, 60 (1986).CrossRefGoogle Scholar
35Takasugi, T., Masahashi, N., and Izumi, O., Scripta Metall. 20, 1317 (1986).CrossRefGoogle Scholar
36Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A 16A, 441 (1985); T. Tagasugi, E. P. George, D. P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).CrossRefGoogle Scholar
37Schulson, E.M., Weihs, T.P., Viens, D.V., and Baker, I., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
38Tagasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).CrossRefGoogle Scholar
39Taub, A. I. and Briant, C. L., p. 343 in Ref. 9.Google Scholar
40Farkas, D., Scripta Metall. 19, 467 (1985).CrossRefGoogle Scholar
41Cahn, R.W. (private communication).Google Scholar
42Hack, J.E., Srolovitz, D.J., and Chen, S.P., Scripta Metall. 20, 1699 (1986).CrossRefGoogle Scholar
43Hack, J. E., Chen, S. P., and Srolovitz, D. J., Acta Metall. (to be published).Google Scholar
44McLean, D., J. de Phys. C4, 273 (1975).Google Scholar
45Schulson, E. M., Baker, I., and Frost, H. J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 195.Google Scholar
46Bohn, H.G., Williams, J.M., Barrett, J. H., and Liu, C.T. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 127.Google Scholar
47Briant, C. L. and Messmer, R. P., Phil. Mag. 42B, 569 (1980); Acta Metall. 30, 1811 (1982); R.P. Messmer and C.L. Briant, Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
48Eberhart, M. E. and Vvedensky, D. D., Phys. Rev. Lett. 58, 61 (1987).CrossRefGoogle Scholar
49White, C.L., Liu, C.T., and Padgett, R.A., Jr., Acta Metall. 36, 2229 (1988).CrossRefGoogle Scholar
50Rice, J. R., in Effect of Hydrogen on Behavior of Materials, edited by Thompson, A.W. and Bernstein, I. M. (AIME, New York, 1976),Google Scholar
51King, A. H. and Yoo, M. H. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 99.Google Scholar
52Mulford, R. A., in “Embrittlement of Engineering Alloys,” Treatise on Materials Science and Technology, edited by Briant, C.L. and Banerji, S. K. (Academic Press, New York, 1983), Vol. 25, p. 1 and references cited therein.Google Scholar
53McMahon, C. J. and Vitek, V., Acta Metall. 27, 507(1979); M.L. Jokl, V. Vitek, and C. J. McMahon, Acta Metall. 28, 2479 (1980).CrossRefGoogle Scholar
54Tagasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).CrossRefGoogle Scholar
55Dimiduk, D. M., Weddington, V. L., and Lipsitt, H.A. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 221.Google Scholar
56Sieloff, D. D., Brenner, S. S., and Burke, M. G. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 83, p. 87.Google Scholar
57Sieloff, D. D., Brenner, S. S., and Ming-Jian, H. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 133, p. 155.Google Scholar
58George, E. P., Liu, C.T., and Padgett, R. A., Jr., Scripta Metall. 23, 979 (1989).CrossRefGoogle Scholar
59Mackenzie, R. D. and Sass, S. L., Scripta Metall. 22, 1807 (1988).CrossRefGoogle Scholar
60Baker, I. and Schulson, E.M., Scripta Metall. 23, 1883 (1989).CrossRefGoogle Scholar
61Krzanowski, J. E., Scripta Metall. 23, 1219 (1989).CrossRefGoogle Scholar
62Hack, J. E. and Chen, S. P. (unpublished research).Google Scholar