Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:39:14.718Z Has data issue: false hasContentIssue false

Investigation of tetragonal distortion in the PbTiO3–BiFeO3 system by high-temperature x-ray diffraction

Published online by Cambridge University Press:  03 March 2011

V.V.S.S. Sai Sunder
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
A. Halliyal
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
A.M. Umarji
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Compositions in the (Pb1−xBix (Ti1−xFex)O3 solid solution system for x ⋚ 0.7 show unusually large tetragonal distortion. High-temperature x-ray diffraction was used to study the tetragonal distortion as a function of temperature (25–700 °C) for compositions (x = 0–0.7) using powders prepared by solid-state reaction in the above system. Large changes in the lattice parameters were observed over a narrow temperature range near Curie temperature (TC) for compositions near the morphotropic phase boundary (MPB) (x ≃ 0.7). Compositions near MPB showed a c/a ratio of 1.18 at room temperature. Polar plots of lattice constants at different temperatures indicated strong anisotropic thermal expansion with zero thermal expansion along the [201] direction.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B., Cook, W. R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, New York, 1971).Google Scholar
2Veda, I., Jpn. J. Appl. Phys. 11(4), 450 (1972).Google Scholar
3Takenchi, H., Jyomura, S., Yamamoto, E., and Ito, I., J. Acous. Soc. Am. 72, 114 (1982).Google Scholar
4Damjanovic, D., Gururaja, T. R., and Cross, L. E., Am. Ceram. Soc. Bull. 66(4), 699 (1987).Google Scholar
5Banno, H. and Saito, S., Jpn. J. Appl. Phys. 22 (Suppl. 22–2), 67 (1983).Google Scholar
6Safari, A., Lee, Y. H., Halliyal, A., and Newnham, R.E., Am. Ceram. Soc. Bull. 66(4), 668 (1987).Google Scholar
7Lee, M. H., Halliyal, A., and Newnham, R. E., Ferroelectrics 87, 71 (1987).Google Scholar
8Lee, M. H., Halliyal, A., and Newnham, R. E., J. Am. Ceram. Soc. 72(6), 986 (1989).Google Scholar
9Gineiwicz, J. R., M. S. Thesis, The Pennsylvania State University, University Park, PA (1985).Google Scholar
10Gineiwicz, J. R., Duscha, K., Newnham, R. E., and Safari, A., in Proc. 1986 IEEE Int. Symp. on Appl. Ferroelectrics (1986), p. 323.Google Scholar
11Fedvlov, S. A., Ladyzhinski, P. B., Pyatigorskaya, I. L., and Venevtsev, Yu. N., Sov. Phys. Solid. State 6(2), 375 (1964).Google Scholar
12Michel, C., Moreau, J. M., Achenbach, G. D., Gerson, R., and James, W. J., Solid State Commun. 1, 701 (1969).Google Scholar
13Moreau, J. M., Michel, C., Gerson, R., and James, W. J., J. Phys. Chem. Solids 32, 1315 (1971).Google Scholar
14Fedvlov, S. A., Venevtsev, Yu. N., Zhdandov, G. S., Smazhevskaya, E. G., and Rez, I. S., Sov. Phys. Crystallogr. 7(1), 62 (1962).Google Scholar
15Smith, R. T., Achenbach, G. D., Gerson, R., and James, W.J., J. Appl. Phys. 39(1), 70 (1968).Google Scholar
16Krainik, N. N., Khuchua, N. P., Brezhnoi, A. A., and Tutov, A. G., Sov. Phys. Solid State 7, 100 (1965).Google Scholar
17Shirane, G. and Hushino, S., J. Phys. Soc. Jpn. 6, 265 (1951).Google Scholar