Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:04:37.210Z Has data issue: false hasContentIssue false

Investigation of some phenomena occurring during continuous ink-jet printing of ceramics

Published online by Cambridge University Press:  31 January 2011

B. Y. Tay
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
M. J. Edirisinghe
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
Get access

Abstract

A ceramic ink was prepared, characterised, and subjected to continuous ink-jet printing. The optimum modulation frequency for printing was estimated. The surface free energies of several substrates were determined and different patterns of the ink droplets were printed on these. Phenomena occurring during the process were investigated. The drop-by-drop resolution and ink spreading were found to be dependent on the dispersive/total surface free energy ratio of the substrates. Ink drying was accompanied by powder migration in the droplets deposited on substrates with a surface free energy lower than the surface tension of the ink. Printing of multiple layers was accompanied by the appearance of ridges, splattering, and non-vertical walls. The causes of these phenomena are discussed in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dawson, T.L., J. Soc. Dyes and Colorists, 116, 52 (2000).Google Scholar
2.Maurer, H.W., Wochenblatt für Papierfabrication, 127, 1012 (1999).Google Scholar
3.Mott, M. and Evans, J.R.G., Mater. Sci. Eng. A 271, 344 (1999).CrossRefGoogle Scholar
4.Mott, M., Song, J.H., and Evans, J.R.G., J. Amer. Ceram. Soc. 82, 1653 (1999).CrossRefGoogle Scholar
5.Hebner, T.R., Wu, C.C., Marcy, D., Lu, N.H., and Sturm, J.C., Appl. Phys. Lett. 72, 519 (1998).CrossRefGoogle Scholar
6.Newman, J.D., Turner, A.P.F., and Marrazza, G., Anal. Chimica Acta 262, 13 (1992).CrossRefGoogle Scholar
7.Edirisinghe, M.J., Brit. Ceram. Trans. 97, 283 (1998).Google Scholar
8.Blazdell, P.F., Evans, J.R.G., Edirisinghe, M.J., Shaw, P., and Binstead, M.J., J. Mater. Sci. Lett. 14, 1562 (1995).CrossRefGoogle Scholar
9.Xiang, Q.F., Evans, J.R.G., Edirisinghe, M.J., and Blazdell, P.F., J. Eng. Manuf. 211B, 211 (1997).CrossRefGoogle Scholar
10.Sachs, E., Cima, M., Williams, P., Brancazio, D., and Cornie, J., J. Eng. for Ind. Trans. ASME 114, 481 (1992).CrossRefGoogle Scholar
11.Song, J.H., Edirisinghe, M.J., and Evans, J.R.G., J. Amer. Ceram. Soc. 82, 3374 (1999).CrossRefGoogle Scholar
12.Windle, J. and Derby, B., J. Mater. Sci. Lett. 18, 87 (1999).CrossRefGoogle Scholar
13.Kim, S.J. and McKean, D.E., J. Mater. Sci. Lett. 17, 141 (1998).CrossRefGoogle Scholar
14.Atkinson, A., Doorbar, J., Hudd, A., Segal, D.L., and White, P.J., J. Sol-Gel Sci. Tech. 8, 1093 (1997).Google Scholar
15.Teng, W.D., Edirisinghe, M.J., and Evans, J.R.G., J. Amer. Ceram. Soc. 80, 486 (1997).CrossRefGoogle Scholar
16.Teng, W.D. and Edirisinghe, M.J., J. Amer. Ceram. Soc. 81, 1033 (1998).CrossRefGoogle Scholar
17.Blazdell, P.F. and Evans, J.R.G., J. Mater. Process. Tech. 99, 94 (2000).CrossRefGoogle Scholar
18.Edirisinghe, M.J., Proc. Brit. Ceram. Soc. 58, front cover, (1998).Google Scholar
19.Teng, W.D. and Edirisinghe, M.J., Brit. Ceram. Trans. 97, 169 (1998).Google Scholar
20.Rashid, H., Tay, B.Y., and Edirisinghe, M.J., J. Mater. Sci. Lett. 19, 799 (2000).CrossRefGoogle Scholar
21.Tay, B.Y., Rashid, H., and Edirisinghe, M.J., J. Mater. Sci. Lett. 19, 1151 (2000).CrossRefGoogle Scholar
22.Weast, R.C., Lide, D.R., Astle, M.J., and Beyer, W.H., CRC Handbook of Chemistry and Physics, 70th edition, (CRC Press, Florida 1989), p. D251.Google Scholar
23.Owens, D.K. and Wendt, R.D., J. Appl. Polym. Sci. 13, 17 (1969).CrossRefGoogle Scholar
24.Lloyd, W.J. and Taub, H.H., in: Output Hardcopy Devices, edited by Durbeck, R.C. and Sherr, S., (Academic Press, New York, 1988), p. 311.Google Scholar
25.Goods, R.J., in Contact Angle, Wettability and Adhesion, edited by Mittal, K.L. (Ultrecht, the Netherlands, 1992), p. 3.Google Scholar
26.Schoff, C.K., in Modern Approaches to Wettability, Theory and Applications, edited by Schrader, M.E. and Loeb, G.I., (Plenum Press, New York, 1992), Chap. 14.Google Scholar
27.Williams, S., Linx Printing Technologies Plc, Cambridge, United Kingdom (private communication).Google Scholar
28.Schredier, J.M., Lindblad, N.R., Hendricks, C.D. Jr., and Crowley, J.M., J. Appl. Phys. 38, 2599 (1967).Google Scholar
29.Parisee, F. and Allain, C., J. Phys. II France 6, 1111 (1996).Google Scholar
30.Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Thomas, T.A., Nature 389, 827 (1997).CrossRefGoogle Scholar
31.Denkov, N.D., Velev, D.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H., and Nagayama, K., Langmuir 8, 3183 (1992).CrossRefGoogle Scholar
32.Buehner, W.L., Hill, J.D., Williams, T.H., and Woods, J.W., IBM J. Res. Develop. 21, 2 (1977).CrossRefGoogle Scholar
33.Paul, B.K. and Baskaran, S., J. Mater. Processing Technology 61, 168 (1996).CrossRefGoogle Scholar