Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T15:04:54.268Z Has data issue: false hasContentIssue false

Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation

Published online by Cambridge University Press:  03 March 2011

P.C. Wo
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China
A.H.W. Ngan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: hwngan@hkucc.hku.hk
Get access

Abstract

The influence of grain boundaries on material deformation in Ni3Al was investigated by relating the material pile-up at grain boundaries and the propagation of slip across grain boundaries to the misorientation between the corresponding grains. Indentation tests were carried out using micro- and nanoindentation at distances shorter than the radius of indent size from a grain boundary on Ni3Al. The indents were observed using scanning electron microscopy and non-contact-mode atomic force microscopy. Repeated experimentation did not reveal a rising trend of hardness near grain boundaries, indicating that hardness is not a sensitive parameter to measure grain boundary strengthening effects. However, it was observed that the slip transfer behavior across a grain boundary has a strong dependence on a local misorientation factor m′ relating the misorientation of slip planes and slip directions on either side of the grain boundary. This result agrees with the fundamental assumption in the physical explanation of the Hall–Petch effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aust, K.T., Hanneman, R.E., Niessen, P. and Westbrook, J.H., Acta Metall. 16 291 (1968).CrossRefGoogle Scholar
2.Watanabe, T., Kitamura, S. and Karashima, S., Acta Metall. 28 455 (1980).CrossRefGoogle Scholar
3.Harris, L.B., Howes, V.R. and Cutmore, N.G., J. Am. Ceram. Soc. 65 35 (1982).CrossRefGoogle Scholar
4.Chou, Y.T., Cai, B.C.Romig, A.D. Jr. and Lin, L.S., Philos. Mag. A 47 363 (1983).CrossRefGoogle Scholar
5.Zhou, Z.Q. and Chou, Y.T., J. Less-Common Met. 114 323 (1985).CrossRefGoogle Scholar
6.Wyrzykowski, J.W. and Grabski, M.W., Philos. Mag. A. 53 505 (1986).CrossRefGoogle Scholar
7.Ngan, A.H.W. and Chiu, Y.L. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q4.10.Google Scholar
8.Schulson, E.M., Weihs, T.P., Baker, I., Frost, H.J. and Horton, J.A., Acta Metall. 34 1395 (1986).CrossRefGoogle Scholar
9.Lee, C.S., Han, G.W., Smallman, R.E., Feng, D. and Lai, J.K.L., Acta Mater. 47 1823 (1999).CrossRefGoogle Scholar
10.Lucas, B.N. and Oliver, W.C., Metall. Mater. Trans. A 30A 601 (1999).CrossRefGoogle Scholar
11.Syed Asif, S.A. and Pethica, J.B., Philos. Mag. A. 76 1105 (1997).CrossRefGoogle Scholar
12.Samuels, L.E. and Mulhearn, T.O., J. Mech. Phys. 5 125 (1956).CrossRefGoogle Scholar
13.Johnson, K.L., J. Mech. Phys. Solids 18 115 (1970).CrossRefGoogle Scholar
14.Tabor, D., The Hardness of Metals (Clarendon Press. Oxford, U.K., 1951), pp. 160.Google Scholar
15.Wang, W. and Lu, K., J. Mater. Res. 17 2314 (2002).CrossRefGoogle Scholar
16.Nix, W.D. and Gao, H.J., Mech. Phys. Solids 46 411 (1998).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
18.Feng, G. and Ngan, A.H.W., J. Mater. Res. 17 660 (2002).CrossRefGoogle Scholar
19.Ngan, A.H.W. and Tang, B., J. Mater. Res. 17 2604 (2002).CrossRefGoogle Scholar
20.Tang, B. and Ngan, A.H.W., J. Mater. Res. 18 1141 (2003).CrossRefGoogle Scholar
21.Voter, A.F. and Chen, S.P. in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.Google Scholar
22.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids 42 1223 (1994).CrossRefGoogle Scholar
23.Soifer, Y.M., Verdyan, A., Kazakevich, M. and Rabkin, E., Scr. Mater. 47 799 (2002).CrossRefGoogle Scholar
24.Liu, Y. and Ngan, A.H.W., Scr. Mater. 44 237 (2001).CrossRefGoogle Scholar
25.Smallman, R.E. and Bishop, R.J., Metals and Materials: Science, Processes, Applications (Butterworth-Heinemann, Oxford, U.K., 1995), pp. 229.Google Scholar
26.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970).CrossRefGoogle Scholar
27.Gleiter, H. and Pumphrey, P., Mater. Sci. Eng. 25 159 (1976).CrossRefGoogle Scholar
28.Malis, T. and Tangri, K., Acta Metall. 27 25 (1979).CrossRefGoogle Scholar
29.Shen, Z., Wagoner, R.H. and Clark, W., Acta Metall. 36 3231 (1988).CrossRefGoogle Scholar
30.Sangal, S., Kurzydlowski, K.J. and Tangri, K., Acta Metall. Mater. 39 1281 (1991).CrossRefGoogle Scholar
31.Friedman, L.H. and Chrzan, D.C., Philos. Mag. A 77 1185 (1998).CrossRefGoogle Scholar