Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:43:02.238Z Has data issue: false hasContentIssue false

Internal friction and Mössbauer study of C–Cr associates in MANET steel

Published online by Cambridge University Press:  31 January 2011

P. Gondi
Affiliation:
Dip. Ingegneria Meccanica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
R. Gupta
Affiliation:
Dip. Ingegneria Meccanica, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
R. Montanari
Affiliation:
Dip. Ingegneria Meccanica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
G. Principi
Affiliation:
Dip. Ingegneria Meccanica, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
M. E. Tata
Affiliation:
Dip. Ingegneria Meccanica, Università di Roma, “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Get access

Abstract

Internal friction and Mössbauer techniques have been used to investigate the structure of C–Cr associates and the arrangement of Fe atoms near them in the Cr martensitic steel MANET subjected to different thermal treatments. After slow rate cooling from the austenitic field, the Mössbauer spectra exhibit, besides the complex magnetic pattern of martensite, a low intensity singlet attributed to the presence of a Cr-rich bcc phase. In correspondence, the internal friction curves, show, among others, a Snoek-type peak due to anelastic processes involving C–Cr associates with 6 Cr atoms. To explain the experimental results, a simple structural model is suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gondi, P. and Montanari, R., Phys. Status Solidi (a) 131, 465 (1992).CrossRefGoogle Scholar
2.Gondi, P. and Montanari, R., J. Alloys Compounds 211, 33 (1994).CrossRefGoogle Scholar
3.Gondi, P., Montanari, R., and Sili, A., Z. Metallk. 85, 664 (1994).Google Scholar
4.Gondi, P., Montanari, R., Sili, A., and Tata, M. E., J. Nucl. Mater. (in press).Google Scholar
5.Danilkin, S. A., Minaev, V. P., and Sumin, V. V., Physica B 174, 241 (1991).CrossRefGoogle Scholar
6.Brand, R. A., Nucl. Instrum. Methods B28, 398 (1987).CrossRefGoogle Scholar
7.Bordoni, P. G., Il Nuovo Cimento 34, 177 (1947).CrossRefGoogle Scholar
8.Nowick, A. S. and Berry, B. S., Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972), p. 588.Google Scholar
9.Dubiel, S. M. and Zukrowski, J. J., J. Magn. Magn. Mater. 23, 214 (1984).CrossRefGoogle Scholar
10.Tomilin, I. A., Sarrak, V. I., Gorokhova, N. A., Suvorova, S. O., and Zhukov, L. L., Phys. Met. Metallogr. 56, 74 (1983).Google Scholar
11.Pollack, H., Karfunkel, U., Lodya, J. A., and Mala, N., Hyp. Interactions 94, 2355 (1994).CrossRefGoogle Scholar
12.Tahara, R., Nakamura, Y., Inagaki, M., and Iwama, Y., Phys. Status Solidi (a) 41, 451 (1977).CrossRefGoogle Scholar