Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T23:02:06.325Z Has data issue: false hasContentIssue false

Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures

Published online by Cambridge University Press:  06 September 2011

Vineet Bhakhri*
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Jianye Wang
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Naeem Ur-rehman
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Constantin Ciurea
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Finn Giuliani
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Luc J. Vandeperre
Affiliation:
Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; and Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
*
a)Address all correspondence to this author. e-mail: v.bhakhri@imperial.ac.uk
Get access

Abstract

An analysis of indentation hardness data from three ceramic materials, zirconium diboride, silicon carbide, and titanium nitride, is presented to extract the fundamental deformation parameters at 295 to 623 K. The measured activation volume was of the order of 1 × b3 to 4 × b3 (b is the Burgers vector). The calculated activation energies were in the range of 0.75 to 1.61 eV and are typical of lattice-controlled dislocation glide mechanism. Using finite difference simulations, it was demonstrated that there is a significant difference between the plastic strain rate and the total strain rate for materials showing substantial elastic deformation (i.e., large hardness/elastic modulus ratio). Therefore, the measured total strain rates must be converted into plastic strain rates, which require a reduction during loading and an increase during the dwell at maximum load. Additionally, importance of quantification of instrumental thermal drift was discussed and use of either short duration indentation tests or high loads was emphasized.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Westbrook, J.H.: The temperature dependence of hardness of some common oxides. Rev. Hautes Temper. et Refract. 3(1), 47 (1966).Google Scholar
2.Ren, X.J., Hooper, R.M., Griffiths, C., and Henshall, J.L.: Indentation-size effects in single-crystal MgO. Philos. Mag. A 82(10), 2113 (2002).CrossRefGoogle Scholar
3.Chen, C.H., Xuan, Y., and Otani, S.: Temperature and loading time dependence of hardness of LaB6, YB6 and TiC single crystals. J. Alloy. Compd. 350(1-2), L4 (2003).CrossRefGoogle Scholar
4.Bsenko, L. and Lundström, T.: The high-temperature hardness of ZrB2 and HfB2. J. Less Common Met. 34(2), 273 (1974).CrossRefGoogle Scholar
5.Dellacorte, C. and Deadmore, D.L.: Vickers Indentation Hardness of Stoichiometric and Reduced Single Crystal TiO2 (rutile) from 25 to 800 C. (NASA Technical Memorandum 105959, 1993).Google Scholar
6.Gridneva, I.V., Mil’man, Yu V., Rymashevskii, G.A., Trefilov, V.I., and Chugunova, S.I.: Effect of temperature on the strength characteristics of zirconium carbide. Powder Metall. Met. Ceram. 15(8), 638 (1976).CrossRefGoogle Scholar
7.Farber, B.Y., Orlov, V.I., and Heuer, A.H.: Energy dissipation during high temperature displacement-sensitive indentation in cubic zirconia single crystals. Physica Status Solidi A 166(1), 115 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
8.Tabor, D.: Hardness of Metals (Oxford, Clarendon Press, 1951).Google Scholar
9.Tabor, D.: The physical meaning of indentation and scratch tests. Br. J. Appl. Phys. 7, 159 (1956).CrossRefGoogle Scholar
10.Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).CrossRefGoogle Scholar
11.Marsh, D.M.: Plastic flow in glass. Proc. R. Soc. A 279, 420 (1963).Google Scholar
12.Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
13.Cheng, Y.T. and Cheng, C.M.: What is indentation hardness? Surf. Coat. Tech. 133-134, 417 (2000).CrossRefGoogle Scholar
14.Vandeperre, L.J., Giuliani, F., and Clegg, W.J.: Effect of elastic surface deformation on the relation between hardness and yield strength. J. Mater. Res. 19(12), 3704 (2004).CrossRefGoogle Scholar
15.Vandeperre, L.J., Giuliani, F., Llyod, S.J., and Clegg, W.J.: The hardness of silicon and germanium. Acta Mater. 55(18), 6307 (2007).CrossRefGoogle Scholar
16.Samuels, L.E. and Mulhearn, T.O.: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).CrossRefGoogle Scholar
17.Gupte, S.S. and Desai, C.F.: Vickers hardness anisotropy and slip system in zinc (tris) thiourea sulphate crystals. Cryst. Res. Technol. 34(10), 1329 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
18.Bucaille, J.L., Stauss, S., Felder, E., and Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51(6), 1663 (2003).CrossRefGoogle Scholar
19.Capehart, T.W. and Cheng, Y.T.: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18(4), 827 (2003).CrossRefGoogle Scholar
20.Ma, X., Yoshida, F., and Shinbata, K.: On the loading curve in microindentation of viscoplastic solder alloy. Mat. Sci. Eng. A. 344(1-2), 296 (2003).CrossRefGoogle Scholar
21.Yue, Z.F., Wan, J.S., and Lu, Z.Z.: Determination of creep parameters from indentation creep experiments. Appl. Math. Mech. Engl. Ed. 24(3), 307 (2003).Google Scholar
22.Roberts, S.G., Pirouz, P., and Hirsch, P.B.: Doping effects on indentation plasticity and fracture in germanium. J. Mater. Sci. 20, 1739 (1985).CrossRefGoogle Scholar
23.Bradby, J.E., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V., and Munroe, P.: Spherical indentation of compound semiconductors. Philos. Mag. A 82(10), 1931 (2002).CrossRefGoogle Scholar
24.Ahn, J.H., Jeon, E., Choi, Y., Lee, Y., and Kwon, D.: Derivation of tensile flow properties of thin films using nanoindentation technique. Curr. Appl. Phys. 2(6), 525 (2002).CrossRefGoogle Scholar
25.Gilman, J.J.: Hardness—a strength microprobe, in The Science of Hardness Testing and its Applications, edited by Westbrook, J.H. and Conrad, H. (American Society for Metals, Metals Park, Ohio, 1973).Google Scholar
26.Suzuki, K., Benino, Y., Fujiwara, T., and Komatsu, T.: Densification energy during nanoindentation of silica glass. J. Am. Ceram. Soc. 85(12), 3102 (2002).CrossRefGoogle Scholar
27.Tancret, F. and Osterstock, F.: Indentation behavior of porous materials: Application to the Vickers indentation cracking of ceramics. Philos. Mag. 83(1), 125 (2003).CrossRefGoogle Scholar
28.Cook, R.F. and Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73(4), 787 (1990).CrossRefGoogle Scholar
29.Pharr, G.M., Oliver, W.C., and Harding, D.S.: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6(6), 1129 (1991).CrossRefGoogle Scholar
30.Clarke, D.R., Kroll, M.C., Kirchner, P.D., and Cook, R.F.: Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60(21), 2156 (1988).CrossRefGoogle ScholarPubMed
31.Juliano, T., Gogotsi, Y., and Domnich, V.: Effect of indentation unloading conditions on phase transformation induced events in silicon. J. Mater. Res. 18(5), 1192 (2003).CrossRefGoogle Scholar
32.Williams, J.S., Chen, Y., Leung-Wong, J., Kerr, A., and Swain, M.V.: Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14(6), 2338 (1999).CrossRefGoogle Scholar
33.Quinn, G.D., Green, P., and Xu, K.: Cracking and the indentation size effect for knoop hardness of glasses. J. Am. Ceram. Soc. 86(3), 441 (2003).CrossRefGoogle Scholar
34.Baufeld, B., Messerschmidt, U., Bartsch, M., and Baither, M.: Plasticity of cubic zirconia between 700 °C and 1150 °C observed by macroscopic compression and by in-situ tensile straining tests. Key Eng. Mater. 97-98, 431 (1994).Google Scholar
35.Pirouz, P., Demenet, J.L., and Hong, M.H.: On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81(5), 1207 (2001).CrossRefGoogle Scholar
36.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9(5), 32 (2006).CrossRefGoogle Scholar
37.Schuh, C.A.: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21(3), 725 (2006).CrossRefGoogle Scholar
38.Everitt, N.M., Davies, M.I., and Smith, J.F.: High temperature nanoindentation – the importance of isothermal contact. Philos. Mag. 91(7), 1221 (2011).CrossRefGoogle Scholar
39.Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60(9), 807 (2009).CrossRefGoogle Scholar
40.Monteverde, F. and Savino, R.: Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions. J. Eur. Ceram. Soc. 27(16), 4797 (2007).CrossRefGoogle Scholar
41.Opila, E., Levine, S., and Lorincz, J.: Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci. 39(19), 5969 (2004).CrossRefGoogle Scholar
42.Ur-rehman, N., Brown, P., and Vandeperre, L.J.: Evolution of the AlN distribution during sintering of AlN doped SiC. Ceram. Eng. Sci. Proc. 31(5), 231 (2010).CrossRefGoogle Scholar
43.Ur-rehman, N., Brown, P., and Vandeperre, L.J.: The role of carbon in processing hot pressed aluminium nitride doped silicon carbide. Ceram. Eng. Sci. Proc. 31(2), 27 (2010).CrossRefGoogle Scholar
44.Wang, J., Giuliani, F., and Vandeperre, L.J.: The effect of load and temperature on hardness of ZrB2 composites. Ceram. Eng. Sci. Proc. 31(2), 59 (2010).CrossRefGoogle Scholar
45.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
46.Sneddon, I.N.: Boussinesq’s problem for a rigid cone. Proc. Cambridge Philos. Soc. 44, 492 (1948).CrossRefGoogle Scholar
47.Quin, G.D., Patel, P.J., and Lloyd, I.: Effect of loading rate upon conventional ceramic microindentation hardness. J. Res. Natl. Inst. Stand. Technol. 107, 299 (2002).CrossRefGoogle Scholar
48.Vandeperre, L.J., Ur-rehman, N., and Brown, P.: Strain rate dependence of hardness of AlN doped SiC. Adv. Appl. Ceram. 109(8), 493 (2010).CrossRefGoogle Scholar
49.Hay, J., Agee, P., and Herbert, E.: Continuous stiffness measurement during instrumented indentation testing. Exp. Tech. 34(3), 86 (2010).CrossRefGoogle Scholar
50.Cordill, M.J., Moody, N.R., and Gerberich, W.W.: Effects of dynamic indentation on the mechanical response of materials. J. Mater. Res. 23(06), 1604 (2008).CrossRefGoogle Scholar
51.Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(03), 653 (2009).CrossRefGoogle Scholar
52.Elmustafa, A.A., Kose, S., and Stone, D.S.: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22(4), 926 (2007).CrossRefGoogle Scholar
53.Hill, R.: The Mathematical Theory of Plasticity. (Oxford, Clarendon Press, 1950).Google Scholar
54.Haggerty, J.S. and Lee, D.W.: Plastic deformation of ZrB2 single crystals. J. Am. Ceram. Soc. 54(11), 572 (1971).CrossRefGoogle Scholar
55.Ghosh, D., Ghatu, S., and Bourne, G.R.: Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics. Scr. Mater. 61, 1075 (2009).CrossRefGoogle Scholar
56.Frost, H.J. and Ashby, M.F.: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. (Oxford, Pergamon Press, 1982).Google Scholar
57.Ohsawa, K., Koizumi, H., Kirchner, H.O.K., and Suzuki, T.: The critical stress in a discrete Peierls-Nabbaro model. Philos. Mag. A. 69(1), 171 (1994).CrossRefGoogle Scholar
58.Clegg, W., Vandeperre, L., and Pitchford, J.: Energy changes and the lattice resistance. Key Eng. Mater. 317-318, 271 (2006).CrossRefGoogle Scholar
59.Fujita, S., Maeda, K., and Hyodo, S.: Dislocation glide motion in 6H SiC single crystals subjected to high-temperature deformation. Philos. Mag. A 55(2), 203 (1987).CrossRefGoogle Scholar
60.Lloyd, S.J., Castellero, A., Giuliani, F., Long, Y., McLaughlin, K.K., Molina-Aldareguia, J.M., Stelmashenko, N.A., Vandeperre, L.J., and Clegg, W.J.: Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc. London, Ser. A 461(2060), 2521 (2005).Google Scholar
61.Uchic, M.D., Dimiduk, D.M., Florando, J.M., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).CrossRefGoogle ScholarPubMed