Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:01:36.838Z Has data issue: false hasContentIssue false

Inorganic nanorings and nanotori: State of the art

Published online by Cambridge University Press:  09 December 2019

Oxana V. Kharissova
Affiliation:
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, C.P. 66455, México
Mauricio Garza Castañón
Affiliation:
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, C.P. 66455, México
Boris I. Kharisov*
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, C.P. 66455, México
*
a)Address all correspondence to this author. e-mail: bkhariss@hotmail.com
Get access

Abstract

Toroidal (ring-like) structures are common in organic chemistry, but at the nanoscale level, the inorganic nanorings and nanotori are limited and represented mainly by carbon, several p- and noble metals (Ag, Au, Al, and Au/Co/Au), metal and nonmetal oxides (ZnO, MoO2, Fe2O3, and SiO2), hydroxides (Co(OH)2), and salts (PbI2 and metal selenides), and some combinations of carbon nanotori with fullerenes and carbon chains, as well as doped nanorings, are known. The nanotori are closely related to ball-type nanostructures as nano-onions, nanoballs, and nanospheres. Despite their relative low existence, they possess several useful properties and respective applications as isolators, sensors, optoelectronics, as traps for atoms and ions, and counterparts in lubricants, thus causing a certain interest in their development. The properties of nanotori have been studied mainly by DFT calculations. Several nanorings possess stabilities up to 3000 K before unfolding, multiresonant properties and magneto–optical activity, paramagnetism, and ferromagnetism. The carbon nanorings are studied considerably better, being compared with other compounds. This review summarizes the state of the art of all available inorganic toroidal nanostructures, believing that a considerable higher number of inorganic systems might be prepared in this form, taking into account their unusual properties.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Kharisov, B.I., Kharissova, O.V., and Ortiz-Mendez, U.: Handbook of Less-Common Nanostructures (CRC Press, Boca Raton, 2012).CrossRefGoogle Scholar
Vojkovic, S., Nunez, A.S., Altbir, D., and Carvalho-Santos, V.L.: Magnetization ground state and reversal modes of magnetic nanotori. J. Appl. Phys. 120, 033901 (2016).CrossRefGoogle Scholar
Avendaño, C., Jackson, G., Müller, E.A., and Escobedo, F.A.: Assembly of porous smectic structures formed from interlocking high-symmetry planar nanorings. PNAS 113, 9699 (2016).CrossRefGoogle ScholarPubMed
Liu, L., Jayanthi, C.S., and Wu, S.Y.: Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations. Phys. Rev. B 64, 033412 (2001).CrossRefGoogle Scholar
Liu, L. and Zhao, J.: Toroidal and coiled carbon nanotubes. In Syntheses and Applications of Carbon Nanotubes and Their Composites, Suzuki, S., ed. (Intech, Croatia, 2013).Google Scholar
Sarapat, P. and Baowan, D.: Optimal configurations for interacting carbon nanotori. Appl. Nanosci. 9, 225 (2019).CrossRefGoogle Scholar
Chen, N., Lusk, M.T., van Duin, A.C.T., and Goddard, W.A. III: Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 72, 085416 (2005).CrossRefGoogle Scholar
Alamian, V., Bahrami, A., and Edalatzade, B.: PI polynomial of V-phenylenic nanotubes and nanotori. Int. J. Mol. Sci. 9, 229 (2008).CrossRefGoogle ScholarPubMed
Chel Kwun, Y., Munir, M., Nazeer, W., Rafique, S., and Min Kang, S.: M-Polynomials and topological indices of V-phenylenic nanotubes and nanotori. Sci. Rep. 7, 8756 (2016).CrossRefGoogle Scholar
Balaban, A.T. and Klein, D.J.: Claromatic carbon nanostructures. J. Phys. Chem. C 113, 19123 (2009).CrossRefGoogle Scholar
Liu, J., Dai, H., Hafner, J.H., Colbert, D.T., Smalley, R.E., Tans, S.J., and Dekker, C.: Fullerene ‘crop circles’. Nature 385, 780 (1997).CrossRefGoogle Scholar
Hilder, T.A. and Hill, J.M.: Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 101, 064319 (2007).CrossRefGoogle Scholar
Koorepazan-Moftakhar, F., RezaAshrafi, A., Ori, O., and Putz, M.V.: Geometry and topology of nanotubes and nanotori. In Exotic Properties of Carbon Nanomatter, Carbon Materials: Chemistry and Physics, Putz, M.V. and Ori, O., eds. (Springer, Dordrecht, 2015); p. 131.Google Scholar
Madani, S. and Ashrafi, A.R.: The energies of (3,6)-fullerenes and nanotori. Appl. Math. Lett. 25, 2365 (2012).CrossRefGoogle Scholar
Chuang, P.C., Guan, J., Witalka, D., Zhu, Z., Jin, B-Y., and Tomanek, D.: Relative stability and local curvature analysis in carbon nanotori. Phys. Rev. B 91, 165433 (2015).CrossRefGoogle Scholar
Cox, B.J. and Hill, J.M.: New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 111, 10855 (2007).CrossRefGoogle Scholar
Liu, C.P. and Ding, J.W.: Electronic structure of carbon nanotori: The roles of curvature, hybridization, and disorder. J. Phys.: Condens. Matter 18, 4077 (2006).Google ScholarPubMed
Liu, C.P.: Zeeman effect on the electronic structure of carbon nanotori in a strong magnetic field. Int. J. Mod. Phys. B 22, 4845 (2008).CrossRefGoogle Scholar
Chou, Y.Y. and Guo, G-Y.: Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes. J. Appl. Phys. 96, 2249 (2004).CrossRefGoogle Scholar
Liu, C.P., Chen, H.B., and Ding, J.W.: Magnetic response of carbon nanotori: The importance of curvature and disorder. J. Phys.: Condens. Matter 20, 15206 (2008).Google Scholar
Rodriguez-Manzo, J.A., Lopez-Urias, F., Terrones, M., and Terrones, H.: Magnetism in corrugated carbon nanotori: The importance of symmetry, defects, and negative curvature. Nano Lett. 4, 2179 (2004).CrossRefGoogle Scholar
Liu, L., Guo, G.Y., Jayanthi, C.S., and Wu, S.Y.: Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88, 217206 (2002).CrossRefGoogle ScholarPubMed
Taşci, E., Yazgan, E., Malcıoğlu, O.B., and Erkoç, Ş.: Stability of carbon nanotori under heat treatment: Molecular-dynamics simulations. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 147 (2005).CrossRefGoogle Scholar
Glukhova, O.E. and Slepchenkov, M.M.: Simulation of the behavior of carbon nanotori during unfolding: A study of stability and electronic structure. Int. J. Nanomater. Nanotechnol. Nanomed. 4, 004 (2018).Google Scholar
Glukhova, O.E., Kolesnikova, A.S., Slepchenkov, M.M., and Savostyanov, G.V.: Prediction of stability for carbon nanotori. In Proceedings SPIE 9339, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications VII (SPIE, San Francisco, 2015); 93390X.Google Scholar
Chang, I-L. and Chou, J-W.: A molecular analysis of carbon nanotori formation. J. Appl. Phys. 112, 063523 (2012).CrossRefGoogle Scholar
Ajori, S., Ansari, R., Hassani, R., and Ghighi, S.H.: Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations. J. Mol. Model. 24, 263 (2018).CrossRefGoogle ScholarPubMed
López-Chávez, E., Crúz-Torres, A., Castillo-Alvarado, F.d.L., Ortíz-López, J., Peña-Castañeda, Y., and Martínez-Magadán, J.M.: Vibrational analysis and thermodynamic properties of C120 nanotorus: A DFT study. J. Nanopart. Res. 13, 6649 (2011).CrossRefGoogle Scholar
López-Chávez, E., Peña-Castañeda, Y., García-Quiroz, A., Castillo-Alvarado, F., Díaz-Gongora, J., and Jimenez-Gonzalez, L.: Ti-decorated C120 nanotorus: A new molecular structure for hydrogen storage. Int. J. Hydrogen Energy 42, 30237 (2017).CrossRefGoogle Scholar
Pozrikidis, C.: Structure of carbon nanorings. Comput. Mater. Sci. 43, 943 (2008).CrossRefGoogle Scholar
Ding, H. and Maier, J.P.: Electronic structures of one-dimension carbon nano wires and rings. J. Phys.: Conf. Ser. 61, 252 (2007).Google Scholar
dos Santos, S.G., Mendes Filho, J., Freire, V.N., Caetano, E.W.C., and Albuquerque, E.L.: Carbon-based nanorings sliding along inner coaxial nanotubes: Mobius topology effects in damping gigahertz oscillations. J. Appl. Phys. 116, 124311 (2014).CrossRefGoogle Scholar
Fedorov, E.G., Yanyushkina, N.N., and Belonenko, M.B.: Terahertz radiation from carbon nanorings in external collinear constant and varying electric fields. Tech. Phys. 58, 584 (2013).CrossRefGoogle Scholar
Shi, G., Zhang, J., He, Y., Ju, S., and Jiang, D.: Thermal conductivity of carbon nanoring linked graphene sheets: A molecular dynamics investigation. Chin. Phys. B 26, 106502 (2017).CrossRefGoogle Scholar
Sarapat, P., Baowan, D., and Hill, J.M.: Interaction energy for a fullerene encapsulated in a carbon nanotorus. Z. Angew. Math. Phys. 69, 77 (2018).CrossRefGoogle Scholar
Sumetpipat, K., Lee, R.K.F., Cox, B.J., Hill, J.M., and Baowan, D.: Carbon nanotori and nanotubes encapsulating carbon atomic-chains. J. Math. Chem. 52, 1817 (2014).CrossRefGoogle Scholar
Hilder, T.A. and Hill, J.M.: Oscillating carbon nanotori along carbon nanotubes. Phys. Rev. B 75, 125415 (2007).CrossRefGoogle Scholar
Sarapat, P., Hill, J.M., and Baowan, D.: Mechanics of atoms interacting with a carbon nanotorus: Optimal configuration and oscillation behaviour. Philos. Mag. 99, 1386 (2019).CrossRefGoogle Scholar
Liu, L., Zhang, L., Gao, H., and Zhao, J.: Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon 49, 4518 (2011).CrossRefGoogle Scholar
Yin Cheung, K., Yang, S., and Miao, Q.: From tetrabenzoheptafulvalene to sp 2 carbon nano-rings. Org. Chem. Front. 4, 699 (2017).CrossRefGoogle Scholar
Omachi, H., Segawa, Y., and Itami, K.: Synthesis of cycloparaphenylenes and related carbon nanorings: A step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378 (2012).CrossRefGoogle ScholarPubMed
Franklin-Mergarejo, R., Ondarse Alvarez, D., Tretiak, S., and Fernandez-Alberti, S.: Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics. Sci. Rep. 6, 31253 (2016).CrossRefGoogle ScholarPubMed
Kawase, T. and Oda, M.: Complexation of carbon nanorings with fullerenes. Pure Appl. Chem. 78, 831 (2006).CrossRefGoogle Scholar
Miki, K., Matsushita, T., Inoue, Y., Senda, Y., Kowada, T., and Ohe, K.: Electron-rich carbon nanorings as macrocyclic hosts for fullerenes. Chem. Commun. 49, 9092 (2013).CrossRefGoogle ScholarPubMed
Kawase, T., Tanaka, K., Seirai, Y., Shiono, N., and Oda, M.: Complexation of carbon nanorings with fullerenes: Supramolecular dynamics and structural tuning for a fullerene sensor. Angew. Chem., Int. Ed. 42, 5597 (2003).CrossRefGoogle ScholarPubMed
Sai Krishna, K. and Eswaramoorthy, M.: Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327 (2007).CrossRefGoogle Scholar
Chan, Y., Cox, B.J., and Hill, J.M.: Carbon nanotori as traps for atoms and ions. Phys. B 407, 3479 (2012).CrossRefGoogle Scholar
Peña-Parás, L., Maldonado-Cortés, D., Kharissova, O.V., Itzel Saldívar, K., Contreras, L., Arquieta, P., and Castaños, B.: Novel carbon nanotori additives for lubricants with superior anti-wear and extreme pressure properties. Tribol. Int. 131, 488 (2019).CrossRefGoogle Scholar
Gong, H., Liu, Y., Yu, Z., Wu, X., and Yin, H.: Plasmonic properties of gold nanotorus and nanoring: Single and dimer structures. In 2013 Proc. Asia Communications and Photonics Conference (OSA Publishing, Beijing, 2013).Google Scholar
Shamraiz, U., Raza, B., Hussain, H., Badshah, A., Green, I.R., Ahmad Kiani, F., and Al-Harrasi, A.: Gold nanotubes and nanorings: Promising candidates for multidisciplinary fields. Int. Mater. Rev. 64, 478 (2018).CrossRefGoogle Scholar
Drogat, N., Granet, R., Sol, V., and Krausz, P.: One-pot silver nanoring synthesis. Nanoscale Res. Lett. 5, 566 (2010).CrossRefGoogle Scholar
Azani, M.R. and Azin Hassanpour, A.: Silver nanorings: New generation of transparent conductive films. Chem. – Eur. J. 24, 19195 (2018).CrossRefGoogle ScholarPubMed
Lin, X., Liu, Y., Lin, M., Zhang, Q., and Nie, Z.: Synthesis of circular and triangular gold nanorings with tunable optical properties. Chem. Commun. 53, 10765 (2017).CrossRefGoogle ScholarPubMed
Chen, H., Mu, S., Fang, L., Shen, H., Zhang, J., and Yang, B.: Polymer-assisted fabrication of gold nanoring arrays. Nano Res. 10, 3346 (2017).CrossRefGoogle Scholar
Lewicka, Z.A., Li, Y., Bohloul, A., Yu, W., and Colvin, V.L.: Nanorings and nanocrescents formed via shaped nanosphere lithography: A route toward large areas of infrared metamaterials. Nanotechnology 24, 115303 (2013).CrossRefGoogle ScholarPubMed
Aizpurua, J., Blanco, L., Hanarp, P., Sutherland, D.S., Kall, M., Bryant, G.W., and Garcıa de Abajo, F.J.: Light scattering in gold nanorings. J. Quant. Spectrosc. Radiat. Transfer 89, 11 (2004).CrossRefGoogle Scholar
Feng, H.Y., Luo, F., Kekesi, R., Granados, D., Meneses‐Rodríguez, D., García, J.M., García‐Martín, A., Armelles, G., and Cebollada, A.: Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv. Opt. Mater. 2, 612 (2014).CrossRefGoogle Scholar
Lehr, D., Dietrich, K., Helgert, C., Käsebier, T., Fuchs, H.J., Tünnermann, A., and Kley, E.B.: Plasmonic properties of aluminum nanorings generated by double patterning. Opt. Lett. 37, 157 (2012).CrossRefGoogle ScholarPubMed
Cao, Z., Cao, X., Sun, L., and He, Y.: Hydrothermal synthesis and characterization of α-Fe2O3 mesocrystals and nanorings. Adv. Mater. Res. 239–242, 886 (2011).Google Scholar
Hughes, W.L. and Wang, Z.L.: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, 043106 (2005).CrossRefGoogle Scholar
Kong, X.Y., Ding, Y., Yang, R., and Wang, Z.L.: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348 (2004).CrossRefGoogle ScholarPubMed
Yang, Y., Yang, Y., Chen, S., Lu, Q., Song, L., Wei, Y., and Wang, X.: Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nat. Commun. 8, 1559 (2017).CrossRefGoogle ScholarPubMed
Narducci, D., Cerofolini, G., and Romano, E.: Nanotori of semiconductor material for use in diagnostics and in the anti-tumor therapy and process for the production thereof. Patent WO 2012140680A8, 2012.Google Scholar
Arockiaraj, M., Klavžar, S., Mushtaq, S., and Balasubramanian, K.: Distance-based topological indices of nanosheets, nanotubes and nanotori of SiO2. J. Math. Chem. 57, 343 (2019).CrossRefGoogle Scholar
Chen, Q., Wang, N., and Guo, L.: Surfactant-free wet chemical synthesis of Co(OH)2 nanodisks and nanorings. Res. Chem. Intermed. 37, 421 (2011).CrossRefGoogle Scholar
Leung, Y.P. and Choy, W.C.H.: Synthesis of wurtzite ZnSe nanorings by thermal evaporation. Appl. Phys. Lett. 88, 183110 (2006).CrossRefGoogle Scholar
Chen, J., Liao, W-S., Chen, X., Yang, T., Wark, S.E., Son, D.H., Batteas, J.D., and Cremer, P.S.: Evaporation-induced assembly of quantum dots into nanorings. ACS Nano 3, 173 (2009).CrossRefGoogle ScholarPubMed
Klein, E., Heymann, L., Hungri, A.B., Lesyuk, R., and Klinke, C.: Colloidal lead iodide nanorings. Nanoscale 10, 21197 (2018).CrossRefGoogle ScholarPubMed
Du, H., Zhang, W., and Li, Y.: Silicon nitride nanorings: Synthesis and optical properties. Chem. Lett. 43, 1360 (2014).CrossRefGoogle Scholar
Loh, G.C. and Baillargeat, D.: Thermal transport in boron nitride nanotorus—Towards a nanoscopic thermal shield. J. Appl. Phys. 114, 183502 (2013).CrossRefGoogle Scholar
Thorner, G., Kiat, J-M., Bogicevic, C., and Kornev, I.: Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization. Phys. Rev. B 89, 220103 (2014).CrossRefGoogle Scholar
Supplementary material: File

Kharissova et al. supplementary material

Figures S1-S15

Download Kharissova et al. supplementary material(File)
File 5.2 MB