Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T12:53:17.387Z Has data issue: false hasContentIssue false

Inhibiting effect of AlPO4 and SiO2 on the anatase → rutile transformation reaction: An x-ray and laser Raman study

Published online by Cambridge University Press:  31 January 2011

R. Debnath
Affiliation:
Central Glass and Ceramic Research Institute, Calcutta -700032, India
J. Chaudhuri
Affiliation:
Central Glass and Ceramic Research Institute, Calcutta -700032, India
Get access

Abstract

The anatase → rutile transformation reaction of TiO2 prepared in contact with amorphous aluminum phosphate and with fume silica has been investigated as a function of temperature by x-ray diffraction methods. It is observed that the anatase → rutile transformation in such systems becomes greatly inhibited and the Raman spectra of titania on such surfaces exhibit features that indicate substrate-TiO2 interfacial reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Czanderna, A.W., Rao, C.N.R., and Honig, J. M., Trans. Faraday Society 54 (7), 1069 (1958).CrossRefGoogle Scholar
2Shannon, R. D. and Pask, J. A., The Am. Mineralogist 49, 1707 (1964).Google Scholar
3Rao, C. N. R., Turner, A., and Honig, J. M., J. Phys. Chem. Solids 2, 173 (1959).Google Scholar
4Shannon, R. D. and Pask, J. A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
5Hishita, S., Takata, M., and Yanagida, H., Yogyo kyokai shi 86, 69 (1978).CrossRefGoogle Scholar
6Tanaka, K., Capule, M. F. V., and Hisanaga, T., Chem. Phys. Lett. 187, 73 (1991).CrossRefGoogle Scholar
7Nishimoto, S., Ohtani, B., Kajiwara, H., and Kagiya, T., J. Chem. Soc, Faraday Trans. I 81, 61 (1985).Google Scholar
8Campelo, J.M., Garcia, A., Luna, D., Marinas, J.M., and Moreno, M.S., J. Chem. Soc. Faraday Trans. I 85 (8), 2535 (1989).CrossRefGoogle Scholar
9Debnath, R., Mater. Lett. 11, 193 (1991).CrossRefGoogle Scholar
10Debnath, R. and Chaudhuri, J., J. of Solid State Chem. 97, 163 (1992).CrossRefGoogle Scholar
11Spurr, R.A. and Myers, H., Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
12Hubbard, C. R., Evans, E. H., and Smith, D. K., J. Appl. Crystallogr. 9, 169 (1976).Google Scholar
13Beattie, I. R. and Gilson, T. R., Proc. R. Soc. London, Ser. A 307, 407 (1968).Google Scholar
14Balachandran, U. and Eror, N.G., J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
15Betsch, R.J., Pask, H.L., and White, W.B., Mater. Res. Bull. XXVI, 613 (1991).Google Scholar
16Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
17Ping, L. and Xihuai, H., Proc. XV Int. Congress on Glass, Leningrad, 2b 175 (1989).Google Scholar