Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:19:09.187Z Has data issue: false hasContentIssue false

Influences of thermal annealing and humidity exposure on surface structure of (100) single-crystal MgO substrate

Published online by Cambridge University Press:  31 January 2011

M. P. Delplancke-Ogletree*
Affiliation:
Department of Metallurgy and Electrochemistry, Faculty of Applied Sciences, CP165, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
M. Ye
Affiliation:
Department of Metallurgy and Electrochemistry, Faculty of Applied Sciences, CP165, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
R. Winand
Affiliation:
Department of Metallurgy and Electrochemistry, Faculty of Applied Sciences, CP165, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
J. F. de Marneffe
Affiliation:
Laboratory of Solid State Physics, CP233, Faculty of Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium
R. Deltour
Affiliation:
Laboratory of Solid State Physics, CP233, Faculty of Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium
*
a)Address all correspondence to this author. e-mail: mpdelpla@ulb.ac.be
Get access

Abstract

We studied the influence of thermal annealing on the surface structure of (100) singlecrystal MgO substrates by atomic force microscopy (AFM). By annealing MgO substrates at various temperatures for 4 h in flowing oxygen, we showed that the surface reconstruction could be explained by considering surface diffusion, surface evaporation, and condensation. At an annealing temperature of 1473 K, a stepped structure was formed with screw dislocations acting as step sources. The influence of humidity on the surface morphology of MgO substrates was also studied by exposing them to a constant humidity of 40 and 80% for different times. After an exposure time of 1.5 h in 80% humidity, the substrate surface was already covered by reaction products. For the 40% humidity, the corresponding time is 10 h. The major reaction product was identified as Mg(OH)2 by x-ray diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Delplancke, M. P., Reniers, F., Asskali, A., Jardinier-Offergeld, M., and Bouillon, F., J. Vac. Sci. Technol. A 11, 1510 (1993).Google Scholar
2.Norton, M. G., Scarfone, C., Li, J., Carter, C.B., and Mayer, J.W., J. Mater. Res. 6, 2022 (1991).CrossRefGoogle Scholar
3.Ye, M., Schroeder, J., Mehbod, M., Deltour, R., Jansen, A. G. M., and Wyder, P., Physica C 258, 95 (1996).Google Scholar
4.Xi, X. X., Geerk, J., Linker, G., Li, Q., and Mayer, O., Appl. Phys. Lett. 54, 2367 (1989).Google Scholar
5.Kabasawa, U., Asano, K., Iyori, M., Hirata, S., Sakuta, K., Fujiwara, Y., and Kobayashi, T., Jpn. J. Appl. Phys. 29, L453 (1991).CrossRefGoogle Scholar
6.Awaji, T., Sakuta, K., Sakaguchi, Y., and Kobayashi, T., Jpn. J. Appl. Phys. 31, L642 (1992).CrossRefGoogle Scholar
7.Holt, S. A., Jones, C. F., Watson, G. S., Crossley, A., Johnston, C., Sofield, C., and Myhra, S., Thin Solid Films 292, 96 (1997).CrossRefGoogle Scholar
8.Watson, G., Holt, S.A., Zhao, R. P., Katsaros, A., Savvides, N., and Myhra, S., Physica C 243, 123 (1995).Google Scholar
9.Blanchard, D. L., Lessor, D. L., LaFemina, J.P., Baer, D. R., Ford, W. K., and Guo, T., J. Vac. Sci. Technol. A 9, 1814 (1991).Google Scholar
10.Shannon, M. D., Eades, J. A., Meichle, M. E., and Turner, P. S., Ultramicroscopy 16, 175 (1985).Google Scholar
11.Ou, H. J. and Cowley, J. M., Ultramicroscopy 22, 207 (1987).Google Scholar
12.Kim, S. and Baik, S., Appl. Surf. Sci. 78, 285 (1994).Google Scholar
13.Kim, S. and Baik, S., J. Am. Ceram. Soc. 77, 230 (1994).Google Scholar
14.Ye, M., Delplancke, M. P., Deltour, R., and Winand, R., Mater. Sci. Eng. B47, 13 (1997).CrossRefGoogle Scholar
15.Ye, M., Delplancke, M. P., Schroeder, J., Winand, R., and Deltour, R., Solid State Commun. 103, 645 (1997).Google Scholar
16.Herring, C., J. Appl. Phys. 21, 301 (1950).CrossRefGoogle Scholar
17.Tasker, P. W. and Duffy, D. M., Surf. Sci. 137, 91 (1984).Google Scholar
18.Frank, F. C., Discuss. Faraday Soc. 5, 48 (1949).Google Scholar
19.Burton, W. K., Cabrera, N., and Frank, F.C., Philos. Trans. Roy. Soc. A243, 299 (1951).Google Scholar
20.Amelinckx, S., in Supplement 6 of Solid State Physics (Academic Press Inc., London, Ltd., 1964).Google Scholar
21.Kim, B. I., Hung, J. W., Jeung, G. T., Moon, S.H., Lee, D. H., Shin, T.U., and Khim, Z. G., J. Vac. Sci. Technol. B 12, 1631 (1994).CrossRefGoogle Scholar