Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:15:06.552Z Has data issue: false hasContentIssue false

Influence of heat treatment on LiNbO3 thin films prepared on Si(111) by the polymeric precursor method

Published online by Cambridge University Press:  31 January 2011

V. Bouquet
Affiliation:
Departamento de Química, LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
E. Longo
Affiliation:
Departamento de Química, LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
E. R. Leite*
Affiliation:
Departamento de Química, LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
J. A. Varela
Affiliation:
Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, 14884-970, Araraquara, SP, Brazil
*
a) Address all correspondence to this author. e-mail: derl@power.ufsar.br
Get access

Abstract

The effects of heat-treatment temperature on LiNbO3 thin films prepared by the polymeric precursor method were investigated. The precursor solution was deposited on Si(111) substrates by dip coating. X-ray diffraction and thermal analyses revealed that the crystallization process occurred at a low temperature (420 °C) and led to films with no preferential orientation. High-temperature treatments promoted formation of the LiNb3O8 phase. Scanning electron microscopy, coupled with energy dispersive spectroscopy analyses, showed that the treatment temperature also affected the film microstructure. The surface texture—homogeneous, smooth, and pore-free at low temperature—turned into an “islandlike” microstructure for high-temperature treatments.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weis, R.S. and Gaylord, T.K., Appl. Phys. A37, 191 (1985).CrossRefGoogle Scholar
2.Ballman, A., J. Am. Ceram. Soc. 48, 112 (1965).CrossRefGoogle Scholar
3.Terabe, K., Iyi, N., Kitamura, K., and Kimura, S., J. Mater. Res. 10, 1779 (1995).CrossRefGoogle Scholar
4.Nashimoto, K., Cima, M.J., Mcintyre, P.C., and Rhine, W.E., J. Mater. Res. 10, 2564 (1995).CrossRefGoogle Scholar
5.Ono, S., Takeo, T., and Hirano, S., J. Amer. Ceram. Soc. 79, 1343 (1996).CrossRefGoogle Scholar
6.Yoon, J.G. and Kim, K., Appl. Phys. Lett. 68, 2523 (1996).CrossRefGoogle Scholar
7.Braunstein, G., Paz-Pujalt, G.R., and Blanton, T.N., Thin Solid Films 264, 4 (1995).CrossRefGoogle Scholar
8.Aubert, P., Garry, G., Bisaro, R., and Garcia Lopez, J., Appl. Surface Sci. 86, 144 (1995).CrossRefGoogle Scholar
9.Lee, S.H., Noh, T.W., and Lee, J.H., Appl. Phys. Lett. 68, 472 (1996).CrossRefGoogle Scholar
10.Yamada, A., Tamada, H., and Saitoh, M., J. Appl. Phys. 76, 1776 (1994).CrossRefGoogle Scholar
11.Kawaguchi, T., Yoon, D-H., Minakata, M., Okada, Y., Imaeda, M., and Fukuda, T., J. Crystal Growth 152, 87 (1995).CrossRefGoogle Scholar
12.Tan, S., Gilbert, T., Hung, C.Y., Schlesinger, T.E., and Migliuolo, M., J. Appl. Phys. 79, 3548 (1996).CrossRefGoogle Scholar
13.Nishida, T., Shimizu, M., Horiuchi, T., Shiosaki, T., and Matsushige, K., Jpn. J. Appl. Phys. 34(9B), 5113 (1995).CrossRefGoogle Scholar
14.Sakashita, Y. and Segawa, H., J. Appl. Phys. 77(11), 5595 (1995).CrossRefGoogle Scholar
15.Feigelson, R.S., J. Crystal Growth 166(1–4), 1 (1996).CrossRefGoogle Scholar
16.Bouquet, V., Zanetti, S.M., Forschini, C.R., Leite, E.R., Longo, E., and Varela, J.A., in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites, edited by Bansal, N.P., Logan, K.V., and Singh, J.P., (Ceram. Trans. 85, Am. Ceram. Soc., Westerville, OH, 1997) p. 333.Google Scholar
17.Zanetti, S.M., Longo, E., Varela, J.A., and Leite, E.R., Mat. Lett. 31, 173 (1997).CrossRefGoogle Scholar
18.Pechini, M.P., U.S. Patent No. 3 330 697 (1967).Google Scholar
19.Anderson, H.U., Pennell, M.J., and Guha, J.P., Adv. Ceramics 21, 91 (1987).Google Scholar
20.Lessing, P.A., Ceramic Bull. 68, 1002 (1989).Google Scholar
21.Cerqueira, M., Nasar, R.S., Longo, E., Leite, E.R., and Varela, J.A., Mater. Lett. 22, 181 (1995).CrossRefGoogle Scholar
22.Leite, E.R., Sousa, C.M.G, Longo, E., and Varela, J.A., Ceramics Int. 21, 143 (1995).CrossRefGoogle Scholar
23.Liu, Z.G., Hu, W.S., Guo, X.L., Liu, J.M., and Feng, D., Appl. Surface Sci. 109/110, 520 (1997).CrossRefGoogle Scholar
24.The Oxide Handbook edited by Samsonov, G.V., (IFI/Plenum, New York, 1973).CrossRefGoogle Scholar