Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:17:46.529Z Has data issue: false hasContentIssue false

Inelastic neutron scattering study of the hydration of tricalcium silicate

Published online by Cambridge University Press:  31 January 2011

S. A. FitzGerald
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
D. A. Neumann
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. J. Rush
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
R. J. Kirkpatrick
Affiliation:
Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
X. Cong
Affiliation:
Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
R. A. Livingston
Affiliation:
Exploratory Research Team, Federal Highway Administration, McLean, Virginia 22101
Get access

Abstract

Inelastic neutron scattering is applied for the first time to monitor directly the concentration of calcium hydroxide formed during the hydration of tricalcium silicate. Results taken between 10 and 40 °C show that the onset of calcium hydroxide formation is delayed at lower temperatures but that the final quantity formed appears to be converging to a temperature-independent value. At 20°C, the 28 day value is 1.3 moles per mole of tricalcium silicate. Combining these results with previous measurements of the free water index made using quasielastic neutron scattering reveals that the hydrogen content of the C–S–H gel decreases significantly at increased curing temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cement-chemistry notation: C=CaO, S=SiO2, H=H2O, A=Al.Google Scholar
2.Tarrida, M., Madon, M., Rolland, B. L., and Colombet, P., Adv. Cem. Bas. Mater. 2, 15 (1995).Google Scholar
3.Taylor, H. F. W. and Newbury, D. E., Cem. Concr. Res. 14, 93 (1984).Google Scholar
4.Pressler, E. E., Brunauer, S., Kantro, D. L., and Weise, C. H., Anal. Chem. 33, 877 (1961).CrossRefGoogle Scholar
5.Shebl, F. A. and Ludwig, U., Zement-Kalk-Gips 31, 510 (1978).Google Scholar
6.Brunauer, S., Copeland, L. E., and Bragg, R. H., J. Phys. Chem. 60, 116 (1956).Google Scholar
7.Ramachandran, V. S., Cem. Concr. Res 9, 677 (1979).CrossRefGoogle Scholar
8.Moukwa, M., Farrington, S., and Youn, D., Thermochimica 195, 231 (1992).CrossRefGoogle Scholar
9.Taylor, H. F. W., Barret, P., Brown, P.W., Double, D. D., Frohnsdorff, G., and Johansen, V., Mater. Constr. 17, 457 (1985).CrossRefGoogle Scholar
10.Clark, S. M. and Barnes, P., Cement Concr. Res. 25, 639 (1995).CrossRefGoogle Scholar
11.Berliner, R., Trouw, F., and Jennings, H., Bull. Am. Phys. Soc. 40, 665 (1995).Google Scholar
12.Lagerde, P., Nerenberg, M., and Farge, Y., in Phonon: Proc. of the International Conference Rennes, France, edited by Nusimovici, M. A. (Flammarion Sciences, Paris, 1971), pp. 116120.Google Scholar
13.Baddoun-Hadjean, R., Fillaux, F., Floquet, N., Belushkin, S., Natkaniec, I., Desgranges, L., and Grebille, D., Chem. Phys. 197, 81 (1995).CrossRefGoogle Scholar
14.Kirkpatrick, R. J., Yarger, J. L., McMillan, P. F., Yu, P., and Cong, X., Adv. Cem. Bas. Mat. 5, 93 (1997).CrossRefGoogle Scholar
15.FitzGerald, S. A., Neumann, D. A., Rush, J. J., Bentz, D., and Livingston, R. A., Chem. Mater. 10, 397 (1998).Google Scholar
16. Manufacturers are identified in order provide complete identification of experimental conditions, and such identification is not intended as a recommendation or endorsement by the NIST.Google Scholar
17.Livingston, R. A., Neumann, D., FitzGerald, S.A., and Rush, J. J., SPIE 2867, 148 (1996).Google Scholar
18.Cong, X. and Kirkpatrick, R. J., Adv. Cem. Bas. Mater. 3, 144 (1996).CrossRefGoogle Scholar
19.Brown, P. W., Galuk, K., and Frohnsdorff, G., Cem. Concr. Res. 14, 843 (1984).Google Scholar
20.Fujii, K. and Kondo, W., J. Am. Ceram. Soc. 57, 492 (1974).CrossRefGoogle Scholar
21. The CH concentration is normalized to the initial water content to facilitate comparison to previous free water measurements.Google Scholar
22.Bée, M., Quasielastic Neutron Scattering (Adam Hilger, Bristol, UK, and Philadelphia, PA, 1988).Google Scholar