Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:44:40.010Z Has data issue: false hasContentIssue false

Indentation plasticity of amorphous and partially crystallized metallic glasses

Published online by Cambridge University Press:  03 March 2011

L. Charleux
Affiliation:
Institut National Polytechnique de Grenoble (INPG), Génie Physique et Mécanique des Matériaux (GPM2), UMR CNRS 5010, ENSPG, 38042 Saint-Martin d’Hères, France
S. Gravier
Affiliation:
Institut National Polytechnique de Grenoble (INPG), Génie Physique et Mécanique des Matériaux (GPM2), UMR CNRS 5010, ENSPG, 38042 Saint-Martin d’Hères, France
M. Verdier
Affiliation:
Institut National Polytechnique de Grenoble (INPG), Laboratoire de Thermodynamique et Physico-Chimie Métallurgique (LTPCM), UMR CNRS 5614, 38402 Saint-Martin d’Hères, France
M. Fivel
Affiliation:
Institut National Polytechnique de Grenoble (INPG), Génie Physique et Mécanique des Matériaux (GPM2), UMR CNRS 5010, ENSPG, 38042 Saint-Martin d’Hères, France
J.J. Blandin*
Affiliation:
Institut National Polytechnique de Grenoble (INPG), Génie Physique et Mécanique des Matériaux (GPM2), UMR CNRS 5010, ENSPG, 38042 Saint-Martin d’Hères, France
*
a) Address all correspondence to this author. e-mail: jean-jacques.blandin@gpm2.inpg.fr
Get access

Abstract

Plastic behavior at room temperature of amorphous, partially crystallized, and fully crystallized Zr41.25Ti13.75Cu12.5Ni10Be22.5 Vitreloy 1 samples was investigated using instrumented indentation. Residual imprints were imaged using atomic force microscopy (AFM). Young’s modulus and hardness were estimated using the contact area derived from AFM imaging. It has been shown that the postmortem area measurement is useful to take into account the pileup effect. Indentation experiments performed with a conical tip were associated with parametric two-dimensional axisymmetric finite element modeling using a pressure-sensitive yield criterion. A two-parameter reverse analysis algorithm was used to probe both yield stress and pressure angle. Results showed that the amorphous alloy exhibits a yield stress and pressure angle in good agreement with literature and compressive tests, and that crystallization affects the pressure angle.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, Z.F., Eckert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).CrossRefGoogle Scholar
2Lee, K.S., Ha, T.K., Ahn, S., and Chang, Y.W.: High temperature deformation behavior of the Zr41.25Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. J. Non-Cryst. Solids 317, 193 (2003).CrossRefGoogle Scholar
3Chu, J.P., Chiang, C.L., Mahalingam, T., and Nieh, T.G.: Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5 alloy at 700 K. Scripta Mater. 49, 435 (2003).CrossRefGoogle Scholar
4Subhash, G., Dowding, R.J., and Kecskes, L.J.: Characterization of uniaxial response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater. Sci. Eng., A 334, 33 (2002).CrossRefGoogle Scholar
5Lund, A.C. and Schuh, C.A.: The Mohr–Coulomb criterion from unit shear processes in metallic glass. Intermetallics 12, 1159 (2004).CrossRefGoogle Scholar
6Patnaik, M.N.M., Narasimhan, R., and Ramamurty, U.: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335 (2004).CrossRefGoogle Scholar
7Moser, B., Kuebler, J., Meinhard, H., Muster, W., and Michler, J.: Observation of instabilities during plastic deformation by in-situ SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).CrossRefGoogle Scholar
8Schuh, C.A. and Nieh, T.G.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).CrossRefGoogle Scholar
9Schuh, C.A., Argon, A.S., Nieh, T.G., and Wadsmorth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).CrossRefGoogle Scholar
10Fan, C., Louzguine, D.V., Li, C., and Inoue, A.: Nanocrystalline composites with high strength obtained in ZrTiNiCuAl bulk amorphous alloys. Appl. Phys. Lett. 75, 340 (1999).CrossRefGoogle Scholar
11Inoue, A.: Mechanical properties of Zr-based bulk glassy alloys containing nanoscale particles. Intermetallics 8, 455 (2000).CrossRefGoogle Scholar
12Bian, Z., He, G., and Chen, G.L.: Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals. Scripta Mater. 46, 407 (2002).CrossRefGoogle Scholar
13Wang, J.C., Choi, B.W., Nieh, T.G., and Liu, C.T.: Crystallization and nanoindentation behavior of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. J. Mater. Res. 15, 798 (2000).CrossRefGoogle Scholar
14Kovács, Zs., Castellero, A., Greer, A.L., Lendvai, J., and Baricco, M.: Thermal stability and instrumented indentation in a Mg60Cu30Y10 bulk metallic glass. Mater. Sci. Eng., A 387–389, 1012 (2004).CrossRefGoogle Scholar
15Wolff, U., Pryds, N., Johnson, E., and Wert, J.A.: The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy. Acta Mater. 52, 1989 (2004).CrossRefGoogle Scholar
16Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinement to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
17Lu, J., Ravichadran, G., and Johnson, W.L.: Deformation behavior of the Zr41.25Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).CrossRefGoogle Scholar
18Gravier, S., Mussi, A., Charleux, L., Blandin, J.J., Donnadieu, P., and Verdier, M.: Mechanical behaviour of nanocomposites derived from zirconium based bulk amorphous alloys. J. Alloys Compd. (2006, in press).Google Scholar
19Tang, X-P., Löffler, J.F., Johnson, W.L., and Wu, Y.: Devitrification of the Zr41.25Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass studied by XRD, SANS and NMR. J. Non-Cryst. Solids 317, 118 (2003).CrossRefGoogle Scholar
20Vaidyanathan, R., Dao, M., Ravichadran, G., and Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).CrossRefGoogle Scholar
21Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
22Cheng, Y.T. and Cheng, C.M.: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).CrossRefGoogle Scholar
23Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S.: Computation modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
24Bucaille, J.L., Stauss, S., Felder, E., and Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenter. Acta Mater. 51, 1663 (2003).CrossRefGoogle Scholar
25Manika, I. and Maniks, J.: Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049 (2006).CrossRefGoogle Scholar
26Abaqus 6.5 Analysis User’s Manual Vol. 3, Materials, 11.3.1–21 (Abaqus, Inc., Providence, RI).Google Scholar
27Suiker, A.S.J. and Fleck, N.A.: Frictionnal collapse of granular assemblies. J. Appl. Mech. 71, 350 (2004).CrossRefGoogle Scholar
28Lund, A.C. and Schuh, C.A.: Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53, 3193 (2005).CrossRefGoogle Scholar