Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:55:26.645Z Has data issue: false hasContentIssue false

Indentation fracture of lead magnesium niobate-based multilayer composite structures

Published online by Cambridge University Press:  31 January 2011

M. H. Megherhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
G. O. Dayton
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
T. R. Shrout
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
J. J. Mecholsky Jr.
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The effects of internal electrodes on the fracture properties of relaxor ferroelectric 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 multilayer structures were studied. It was observed that the position of the first electrode layer from the surface is critical to the strength and toughness of the multilayer structure. Positioning the electrode close to the surface was found to enhance interaction with cracks which initiate on the multilayer surface. This interaction limits the effective crack length and therefore increases the fracture strength and effective toughness of the composite. Samples indented parallel to the electrodes exhibited higher fracture strengths and toughness than those indented perpendicular to the conducting layers. Both parallel and perpendicular orientations gave higher strength and toughness than the control specimens (without electrodes).

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Smolenskii, G. A. and Agranovskaya, A. I., Sov. Phys.-Tech. Phys. 3, 13801382 (1958).Google Scholar
2Smolenskii, G. A. and Agranovskaya, A.I., Sov. Phys.-Solid State 1 (10), 14291437 (1959).Google Scholar
3Bokov, V.A. and Myl'nikova, I.E., Sov. Phys.-Solid State 3 (3), 613623 (1961).Google Scholar
4Smolenskii, G.A., Krainik, N. N., Berezhnoi, A. A., and Myl'nikova, A. A., Sov. Phys.-Solid State 10, 365 (1968).Google Scholar
5Smolenskii, G.A., Krainik, N. N., Berezhnoi, A. A., and Myl'nikova, A. A., Sov. Phys.-Solid State 10, 2105 (1969).Google Scholar
6Uchino, K., Am. Ceram. Soc. Bull. 65 (4), 647652 (1986).Google Scholar
7Smolenskii, G.A., Isupov, V. A., Agranovskaya, A.I., and Popov, S. N., Sov. Phys.-Solid State 2 (11), 25842594 (1961).Google Scholar
8Smolenskii, G. A., J. Phys. Soc. Jpn. 28, 2637 (1970).Google Scholar
9Cross, L. E., Jang, S. J., and Newnham, R. E., Ferroelectrics 23, 187192 (1980).CrossRefGoogle Scholar
10Nomura, S. and Uchino, K., Ferroelectrics 41, 117132 (1982).CrossRefGoogle Scholar
11Shrout, T. R., Kumar, U., Megherhi, M., Yang, N., and Jang, S. J., Ferroelectrics 76, 479487 (1987).CrossRefGoogle Scholar
12Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66 (4), 704711 (1987).Google Scholar
13Jang, S. J., Ph.D. Thesis, The Pennsylvania State University, University Park, PA (1979).Google Scholar
14Swartz, S., Shrout, T.R., Schulze, W.A., and Cross, L.E., J. Am. Ceram. Soc. 76, 311315 (1984).CrossRefGoogle Scholar
15Jang, S. J., Uchino, K., Nomura, S., and Cross, L. E., Ferroelectrics 27, 3134 (1980).CrossRefGoogle Scholar
16Takahashi, S., Ochi, A., Yonezawa, M., Yano, T., Hamatsuki, T., and Fukui, I., Ferroelectrics 50, 181190 (1983).CrossRefGoogle Scholar
17Bonner, W. A., Ph.D. Thesis, The Pennsylvania State University, University Park, PA (1967).Google Scholar
18Whatmore, R. W., Osbond, P. C., and Shorrocks, N. M., Ferroelectrics 76, 351367 (1987).CrossRefGoogle Scholar
19Takahashi, S., Ochi, A., Yanezawa, M., Yano, T., Hamatsuki, T., and Fukui, I., Ferroelectrics 50, 181190 (1983).CrossRefGoogle Scholar
20Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68 (11), 604615 (1985).CrossRefGoogle Scholar
21Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68 (11), 616623 (1985).CrossRefGoogle Scholar
22Chantikul, P., Anstis, G.R., Lawn, B.R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 539543 (1981).CrossRefGoogle Scholar
23Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64 (9), 533538 (1981).CrossRefGoogle Scholar
24Marshall, D. B. and Lawn, B.R., J. Mater. Sci. 14, 20012012 (1979).CrossRefGoogle Scholar
25Marshall, D.B., Lawn, B.R., and Chantikul, P., J. Mater. Sci. 14, 22252235 (1979).CrossRefGoogle Scholar
26Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc. 63 (9–10), 532536 (1980).CrossRefGoogle Scholar
27Cook, R. F., Freiman, S.W., Lawn, B.R., and Pohanka, R. C., Ferroelectrics 50, 267272 (1983).CrossRefGoogle Scholar
28Rice, R.W. and Freiman, S.W., J. Am. Ceram. Soc. 64 (6), 350354 (1981).CrossRefGoogle Scholar
29Pohanka, R.C., Freiman, S.W., and Bender, B. A., J. Am. Ceram. Soc. 10 (1–2), 7275 (1978).CrossRefGoogle Scholar
30Freiman, S.W., Proc. of the 6th IEEE Int. Symp. on Applications of Ferroelectrics, 361–313 (1986).Google Scholar
31Lawn, B.R., Freiman, S.W., Baker, T.L., Kobb, D.D., and Gonzalez, A.C., Communication of Am. Ceram. Soc, C-67-C-69 (1984).CrossRefGoogle Scholar
32Swartz, S. and Shrout, T.R., Mater. Res. Bull. 17, 12451250 (1982).CrossRefGoogle Scholar
33Megherhi, M. H., M.S. Thesis, The Pennsylvania State University, University Park, PA (1988).Google Scholar
34Brunauer, S., Emmet, P. H., and Teller, E., J. Am. Ceram. Soc. 60, 309319 (1938).Google Scholar
35Gregg, S. J. and Sing, K. S.W., Adsorption Surface Area and Porosity, 2nd ed. (Academic Press, New York, 1983).Google Scholar
36Muly, E.C. and Frock, H.N., Optical Eng. 19 (6), 861869 (Nov./Dec. 1980).CrossRefGoogle Scholar
37Davis, W.R., Trans. Br. Ceram. Soc. 67, 515541 (1968).Google Scholar
38Spinner, S. and Tefft, W. E., Proceedings of ASTM 61, 12211238 (1961).Google Scholar
39McSKimin, H. J., J. Acoust. Soc. Am. 33, 1216 (1961).CrossRefGoogle Scholar
40McSKimin, H. J. and Andreatch, P., J. Acoust. Soc. Am. 34, 609615 (1962).CrossRefGoogle Scholar
41Mendelson, M.I., J. Am. Ceram. Soc. 52 (8), 443446 (1969).CrossRefGoogle Scholar
42Gorton, A. J., Chen, J., Smith, D., and Harmer, M. P., Proc. of the 6th IEEE Int. Symp. on Applications of Ferroelectrics, 150153 (1986).Google Scholar
43Goo, E. and Thomas, E., J. Am. Ceram. Soc. 69 (8), 188190 (1986).CrossRefGoogle Scholar
44Shelleman, D. L., M.S. Thesis, The Pennsylvania State University, University Park, PA (1987).Google Scholar
45Dungan, R. H. and Storz, L.J., J. Am. Ceram. Soc. 68 (10), 530533 (1985).CrossRefGoogle Scholar
46Pohanka, R. C., Rice, R.W., and Walker, B. E., Jr. J. Am. Ceram. Soc. 59 (1–2), 7174 (1976).CrossRefGoogle Scholar
47Schulze, W. A., Ferroelectrics 87, 361377 (1988).CrossRefGoogle Scholar
48Uchino, K. and Cross, L. E., J. Mater. Sci. 15, 26432646 (1980).CrossRefGoogle Scholar
49Freiman, S.W. and Gonzalez, A. C., Adv. Ceram. 9 (1986).Google Scholar