Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:44:41.905Z Has data issue: false hasContentIssue false

In situ X-ray Investigation of Hydrogen Charging in Thin Film Bimetallic Electrodes

Published online by Cambridge University Press:  31 January 2011

Najeh M. Jisrawi
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
Harold Wiesmann
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
M. W. Ruckman
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
T. R. Thurston
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
G. Reisfeld
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
B. M. Ocko
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
Myron Strongin
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchroton Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb, and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data were also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. A good review of the current status of electrochemical technology is given in Surface Electrochemistry–A Molecular Approach, Bockris, J. O'M. and Khan, S. U. M. (Plenum Press, New York, 1994), Chap. 9.Google Scholar
2. See, for example, “Hydrogen Storage Materials, Batteries and Electrochemistry,” edited by Corrigan, A. and Srinvagan, S., PV 92-5, The Electrochemical Society Proceedings Series, Pennington, NJ (1992).Google Scholar
3.Iwakura, C., Sakai, T., and Ishikawa, H., Chem. Ind. 40, 248 (1988).Google Scholar
4.Ovshinsky, S. R., Fetcenko, M. A., and Ross, J., Science 260, 176 (1993); S. R. Ovshinsky, H. Sapru, K. Dea, and K. C. Hong, U.S. Patent 4,431,561 (1984).CrossRefGoogle Scholar
5.McCormack, M., Badding, M. E., Vyas, B., Zahurak, S. M., and Murphy, D. W., J. Electrochem. Soc. 143, L31 (1996).Google Scholar
6.Briggs, G. W. D., Electrochimica Acta 1, 297 (1959); J. N. Andrews and A. R. Ubbelohde, Proc. Roy. Soc. A 253, 6 (1959); S. Uno Falk, J. Electrochem. Soc. 107, 661 (1960); G. W. D. Briggs and W. F. K. Wynne-Jones, Electrochimica Acta 7, 241 (1962); A. J. Salkind and P. F. Bruins, J. Electrochem. Soc. 109, 356 (1962).Google Scholar
7.Chianelli, R. R., Scanlon, J. C., and Rao, B. M. L., J. Electrochem. Soc. 125, 1563 (1978).Google Scholar
8.Fleischmann, M. and Mao, B. W., J. Electroanal. Chem. 229, 125 (1987).CrossRefGoogle Scholar
9.Nazri, G. and Muller, R. H., J. Electrochem. Soc. 132, 1385 (1985).Google Scholar
10.Samant, M. G., Toney, M. F., Borges, G. L., Blum, L., and Melroy, O. R., Surf. Sci. 193, L29 (1988).CrossRefGoogle Scholar
11.Adzic, G. D., Johnson, J. R., Reilly, J. J., McBreen, J., Mukerjee, S., Sridhar-Kumar, M. P., Zhang, W., and Srinvasan, S., J. Electrochem. Soc. 142, 3429 (1995).Google Scholar
12.Latroche, M., Percheron-Guegan, A., Chabre, Y., Poinsignon, C., and Pannetier, J., J. Alloys and Compounds 189, 59 (1992).CrossRefGoogle Scholar
13. J. O'Bockris, M. and Reddy, A. K. N., Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 2.Google Scholar
14.Koch, E., Handbook on Synchrotron Radiation (Elsevier Scientific Publishers, Amsterdam, The Netherlands, 1983), Vols. 1–4.Google Scholar
15.Will, F. G. and Knorr, C. A., Z. Electrochim. 64, 258 (1960); R. S. Nicholson and I. Shain, Anal. Chem. 26, 706 (1964).Google Scholar
16.Reisfeld, G., Jisrawi, N. M., Ruckman, M. W., and Strongin, Myron, Phys. Rev. B 53, 4974 (1996).CrossRefGoogle Scholar
17.Pasternak, R. A. and Evans, B., J. Electrochem. Soc. 114, 452 (1967).CrossRefGoogle Scholar
18.Wang, J., Ocko, B. M., Davenport, A. J., and Isaacs, H., Phys. Rev. B 46, 10, 321 (1992).Google Scholar
19. “NSLS User's Manual, Guide to the VUV and X-ray Beam Lines,” edited by N. F. Gmur, BNL Informal Report No. 48724 (1993).Google Scholar
20.Warren, B. E., X-ray Diffraction (Addison-Wesley Publishers, Reading, MA 1969), Chap. 13, p. 251.Google Scholar
21.Peisl, H., in Hydrogen in Metals I, edited by Alefeld, G. and J., Völkl, Topics in Appl. Phys. (Springer-Verlag, Berlin, 1978), Vol. 28 p. 55).Google Scholar
22.Bond, R. A. and Ross, D. K., J. Phys. F 12, 597 (1982).CrossRefGoogle Scholar
23.Capon, A. and Parsons, R., J. Electroanal. Chem. 39, 275 (1972); R. R. Adzic, M. D. Spasojevic, and A. R. Despic, J. Electroanal. Chem. 92, 31 (1978); J. P. Chevillot, J. Farcy, C. Hinner, and A. Rousseau, J. Electroanal. Chem. 64, 39 (1975); J. Horkans, J. Electroanal. Chem. 106, 245 (1980); S. Szpak, P. A. Mosier-Boss, S. R. Scharber, and J. J. Smith, J. Electroanal. Chem. 337, 147 (1992).CrossRefGoogle Scholar
24. Ibid, Ref. 21, p. 65.Google Scholar
25.Schöber, T. and Wenzl, H., in Hydrogen in Metals II, edited by Alefeld, G. and J., Völkl, Topics in Appl. Phys. (Springer-Verlag, Berlin, 1978), Vol. 28, p. 11.Google Scholar
26.Zabel, H. and Peisl, J., J. Phys. F 9, 1461 (1979).CrossRefGoogle Scholar
27.Alefeld, G., Phys. Chem. 76, 355 (1972); R. Feenstra, G. J. de Bruin-Hordijk, H. L. M. Bakker, R. Griessen, and D. G. de Groot, J. Phys. F 13, L13 (1983).Google Scholar
28.Moehlecke, S., Majkrzak, C. F., and Strongin, M., Phys. Rev. B 31, 6804 (1985).CrossRefGoogle Scholar
29.Fukai, Y., The Metal-Hydrogen System: Basic Bulk Properties, Springer Series in Materials Science (Springer-Verlag, Berlin, 1993), Vol. 21, p. 2.Google Scholar