Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T13:56:16.296Z Has data issue: false hasContentIssue false

In situ stress measurements during direct MOCVD growth of GaN on SiC

Published online by Cambridge University Press:  24 August 2015

Zakaria Y. Al Balushi
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Joan M. Redwing*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
a)Address all correspondence to this author. e-mail: jmr31@psu.edu
Get access

Abstract

In situ curvature measurements were used to compare the stress evolution of GaN films grown directly on 6H-SiC via a two-step temperature growth to films grown with an AlN buffer layer. The two-step temperature growth consisted of an initial low-temperature and a main high-temperature GaN layer. In the case of GaN grown directly on 6H-SiC, the high-temperature layer initiated growth under compressive stress which transitioned to tensile stress. Films grown directly on 6H-SiC exhibited a reduction in the threading dislocation (TD) density and an improvement in the surface roughness compared to growth on the AlN buffer layer. Furthermore, transmission electron microscopy of the GaN grown directly on 6H-SiC revealed predominant (a + c)-type TD along with basal plane stacking faults and $\left\{ {11\bar 20} \right\}$ prismatic stacking faults. Channeling cracks were observed in the GaN film when the AlN buffer layer was not utilized. This was attributed to tensile stress induced from the thermal expansion coefficient mismatch.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, S., Kazanbas, M., Wendt, M., Kleeb, T., and Zacharias, P.: Prospects of GaN devices in automotive electrification. In Proceedings of the IEEE PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy, 2014; pp. 18.Google Scholar
Kachi, T.: GaN power devices for automotive applications. In IEEE Compound Semiconductor Integrated Circuit Symposium, 2007. (IEEE, 2007); pp. 14.Google Scholar
Kachi, T.: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014).CrossRefGoogle Scholar
Shen, Z.J. and Omura, I.: Power semiconductor devices for hybrid, electric, and fuel cell vehicles. Proc. IEEE 95, 778789 (2007).CrossRefGoogle Scholar
Ning, P., Liang, Z., Wang, F., and Marlino, L.: Power module and cooling system thermal performance evaluation for HEV application. In Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012. (IEEE, 2012); pp. 21342139.CrossRefGoogle Scholar
Mishra, U.K., Parikh, P., and Wu, Y.F.: AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 90, 10221031 (2002).CrossRefGoogle Scholar
Binari, S.C., Klein, P.B., and Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90, 10481058 (2002).CrossRefGoogle Scholar
Daumiller, I., Theron, D., Gaquiere, C., Vescan, A., Dietrich, R., Wieszt, A., Leier, H., Vetury, R., Mishra, U.K., Smorchkova, I.P., Keller, S., Nguyen, C., and Kohn, E.: Current instabilities in GaN-based devices. IEEE Electron Device Lett. 22, 6264 (2001).CrossRefGoogle Scholar
Su, M., Chen, C., Chen, L., Esposto, M., and Rajan, S.: Challenges in the automotive application of GaN power switching devices. In International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2012) 27, 2012.Google Scholar
Chowdhury, S., Swenson, B.L., Wong, M.H., and Mishra, U.K.: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 74014 (2013).CrossRefGoogle Scholar
Uesugi, T. and Kachi, T.: Which are the future GaN power devices for automotive applications, lateral structures or vertical structures? In Proceeding of CSMantech. (CS MANTECH, 2011); p. 307.Google Scholar
Oka, T., Ueno, Y., Ina, T., and Hasegawa, K.: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 7, 021002 (2014).CrossRefGoogle Scholar
Kanechika, M., Sugimoto, M., Soejima, N., Ueda, H., Ishiguro, O., Kodama, M., Hayashi, E., Itoh, K., Uesugi, T., and Kachi, T.: A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn. J. Appl. Phys. 46, L503 (2007).CrossRefGoogle Scholar
Wu, Y.F., Saxler, A., Moore, M., Smith, R.P., Sheppard, S., Chavarkar, P.M., Wisleder, T., Mishra, U.K., and Parikh, P.: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25, 117119 (2004).CrossRefGoogle Scholar
Wu, Y.F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P., and Mishra, U.K.: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586590 (2001).Google Scholar
Neudeck, P.G., Okojie, R.S., and Chen, L.Y.: High-temperature electronics—A role for wide bandgap semiconductors? Proc. IEEE 90, 10651076 (2002).CrossRefGoogle Scholar
Davis, R.F., Weeks, T.W. Jr., Bremser, M.D., Tanaka, S., Kern, R.S., Sitar, Z., Ailey, K.S., Perry, W.G., and Wang, C.: Issues and examples regarding growth of AlN, GaN and AlxGa1−xN thin films via OMVPE and gas source MBE. MRS Online Proc. Libr. 395, 313 (1995).CrossRefGoogle Scholar
Lahrèche, H., Leroux, M., Laügt, M., Vaille, M., Beaumont, B., and Gibart, P.: Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy. J. Appl. Phys. 87, 577 (2000).CrossRefGoogle Scholar
Di Forte-Poisson, M-A., Romann, A., Tordjman, M., Magis, M., Di Persio, J., Jacques, C., and Vicente, P.: LPMOCVD growth of GaN on silicon carbide. J. Cryst. Growth 248, 533536 (2003).CrossRefGoogle Scholar
Kyeong Jeong, J., Choi, J-H., Jin Kim, H., Seo, H-C., Jin Kim, H., Yoon, E., Hwang, C.S., and Kim, H.J.: Buffer-layer-free growth of high-quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition. J. Cryst. Growth 276, 407414 (2005).CrossRefGoogle Scholar
Losurdo, M., Giangregorio, M.M., Bruno, G., Kim, T-H., Choi, S., and Brown, A.: Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation. Phys. Status Solidi 203, 16071611 (2006).CrossRefGoogle Scholar
Floro, J.A., Chason, E., and Lee, S.R.: Real time measurement of epilayer strain using a simplified wafer curvature technique. MRS Online Proc. Libr. 406, 491496 (1995).CrossRefGoogle Scholar
Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172175 (1909).Google Scholar
Koleske, D.D., Fischer, A.J., Allerman, A.A., Mitchell, C.C., Cross, K.C., Kurtz, S.R., Figiel, J.J., Fullmer, K.W., and Breiland, W.G.: Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Appl. Phys. Lett. 81, 1940 (2002).CrossRefGoogle Scholar
Koleske, D.D., Coltrin, M.E., Cross, K.C., Mitchell, C.C., and Allerman, A.A.: Understanding GaN nucleation layer evolution on sapphire. J. Cryst. Growth 273, 8699 (2004).CrossRefGoogle Scholar
Cammarata, R.C., Trimble, T.M., and Srolovitz, D.J.: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 24682474 (2000).CrossRefGoogle Scholar
Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 138 (1994).CrossRefGoogle Scholar
Acord, J.D., Raghavan, S., Snyder, D.W., and Redwing, J.M.: In situ stress measurements during MOCVD growth of AlGaN on SiC. J. Cryst. Growth 272, 305311 (2004).CrossRefGoogle Scholar
Romanov, A.E. and Speck, J.S.: Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 83, 2569 (2003).CrossRefGoogle Scholar
Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., and Hearne, S.J.: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).CrossRefGoogle ScholarPubMed
Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48, 3142 (2000).CrossRefGoogle Scholar
Nix, W.D. and Clemens, B.M.: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 34673473 (1999).CrossRefGoogle Scholar
Krost, A., Dadgar, A., Bläsing, J., Diez, A., Hempel, T.C., Petzold, S., Christen, J., and Clos, R.: Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile. Appl. Phys. Lett. 85, 34413443 (2004).CrossRefGoogle Scholar
Raghavan, S. and Redwing, J.M.: Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 98, 23514 (2005).CrossRefGoogle Scholar
Abermann, R.: Measurements of the intrinsic stress in thin metal films. Vacuum 41, 12791282 (1990).CrossRefGoogle Scholar
Koch, R.: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys.: Condens. Matter 6, 9519 (1994).Google Scholar
Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).Google Scholar
Perlin, P., Jauberthie-Carillon, C., Itie, J.P., San Miguel, A., Grzegory, I.I., and Polian, A.: Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 8389 (1992).CrossRefGoogle ScholarPubMed
Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J.W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E.R., Bremser, M.D., and Davis, R.F.: Strain-related phenomena in GaN thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1774517753 (1996).CrossRefGoogle ScholarPubMed
Ren, Z., Sun, Q., Kwon, S-Y., Han, J., Davitt, K., Song, Y.K., Nurmikko, A.V., Cho, H-K., Liu, W., Smart, J.A., and Schowalter, L.J.: Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91, 051116 (2007).CrossRefGoogle Scholar
Won, D., Weng, X., Al Balushi, Z., and Redwing, J.M.: Influence of growth stress on the surface morphology of N-polar GaN films grown on vicinal C-face SiC substrates. Appl. Phys. Lett. 103, 241908 (2013).CrossRefGoogle Scholar
Moram, M.A. and Vickers, M.E.: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 36502 (2009).CrossRefGoogle Scholar
Srikant, V., Speck, J.S., and Clarke, D.R.: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar
Gay, P., Hirsch, P.B., and Kelly, A.: The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315319 (1953).CrossRefGoogle Scholar
Vermaut, P., Ruterana, P., Nouet, G., Salvador, A., and Morkoç, H.: Prismatic defects in GaN grown on 6H-SiC by molecular beam epitaxy. Mater. Sci. Eng., B 43, 279282 (1997).CrossRefGoogle Scholar