Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:14:21.205Z Has data issue: false hasContentIssue false

In situ Sputter Deposition of PbTiO3 Thin Films on Different Substrates: Influence of the Growth Temperature and the Sputtered Lead Flux on the Perovskite Phase Formation

Published online by Cambridge University Press:  31 January 2011

B. Jaber
Affiliation:
Laboratoire des Matériaux Céramiques Avancés (LAMAC), CRITT Céramiques Fines de Maubeuge, Université de Valenciennes et du Hainaut-Cambrésis, Z. I. Champ de l'Abbesse, 59600 Maubeuge, France
D. Rèmiens
Affiliation:
Laboratoire des Matériaux Céramiques Avancés (LAMAC), CRITT Céramiques Fines de Maubeuge, Université de Valenciennes et du Hainaut-Cambrésis, Z. I. Champ de l'Abbesse, 59600 Maubeuge, France
B. Thierry
Affiliation:
Laboratoire des Matériaux Céramiques Avancés (LAMAC), CRITT Céramiques Fines de Maubeuge, Université de Valenciennes et du Hainaut-Cambrésis, Z. I. Champ de l'Abbesse, 59600 Maubeuge, France
Get access

Abstract

Thin films of lead titanate were prepared in situ using radio-frequency magnetron sputter deposition. The in situ perovskite phase formation has been studied as a function of the substrate temperature, the sputtered lead flux, and the substrate nature. The incident lead flux is controlled by the lead content in the target. An equilibrium zone, i.e., a saturation effect of the lead incorporation, exists where the films are stoichiometric. The temperature at which this zone appears depends on the sputtered lead flux and the substrate type. The growth mechanism is governed by a competition between the arrival rate of Pb and their re-evaporation from the film during the growth. The in situ formation temperature of the perovskite phase increased when the incident Pb flux increased. As a result, PbTiO3 films have been prepared at low temperature with appropriate combination of the substrate temperature and the lead content in the target, i.e., the sputtered lead flux. Since the lead sticking coefficient is very sensitive to the substrate material, the perovskite phase appears at different temperatures, depending on the substrate nature. PbTiO3 films are obtained at 550 °C on Al2O3 and SrTiO3 substrates; on Si/SiO2/Ti/Pt substrates, stoichiometric films are obtained at 440 °C. The structure and the microstructure of the films were examined at various deposition conditions. The substrate temperature strongly influenced the film orientation, and the crystallinity depended on the incident lead flux. High quality thin films (FWHM = 0.2°) are obtained at 550 °C on SrTiO3 substrates. The films deposited at 440 °C on Si/SiO2Ti/Pt show ferroelectric properties. This self-controlling mechanism of the stoichiometric composition allows the growth of ferroelectric films at low temperature, compatible with semi-conductor technologies for the realization of integrated circuits

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, K., Kawashima, S., and Ueda, I., Jpn. J. Appl. Phys. 24, suppl. 24–2, 482 (1985).CrossRefGoogle Scholar
2.Kojima, M., Sugawa, M., Sato, H., Matsui, Y., Okuyama, M., and Hamakawa, Y., Proc. 2nd Sensor Symposium, Tokyo (1982), p. 241.Google Scholar
3.Kawaguchi, T., Adachi, H., Setsune, K., Yamazaki, O., and Wasa, K., Appl. Opt. 23, 2187 (1984).CrossRefGoogle Scholar
4.Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).CrossRefGoogle Scholar
5.Sreenivas, K. and Sayer, M., J. Appl. Phys. 64, 1484 (1988).CrossRefGoogle Scholar
6.Okada, M., Takai, S., Amemiya, M., and Tominaga, K., Jpn. J. Appl. Phys. 28, 1030 (1989).CrossRefGoogle Scholar
7.Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
8.Roy, D., Krupanidhi, S. B., and Dougherty, J. P., J. Appl. Phys. 69, 7930 (1991).CrossRefGoogle Scholar
9.Tabata, H., Kwai, T., Murata, O., Fujioka, J., Minakata, S. I., Appl. Phys. Lett. 59, 2354 (1991).CrossRefGoogle Scholar
10.Bai, G. R., Chang, H. L. M., Kim, H. K., Foster, C. M., and Lam, D. J., Appl. Phys. Lett. 61, 408 (1992).CrossRefGoogle Scholar
11.Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
12.Lin, W. J. and Tseng, T. Y., J. Appl. Phys. 77, 6466 (1995).CrossRefGoogle Scholar
13.Li, X., Liu, J., Zeng, Y., and Liang, J., Appl. Phys. Lett. 67, 2345 (1993).CrossRefGoogle Scholar
14.Adachi, H. and Wasa, K., IEEE Trans. on Ultrason. Ferro. and Freq. Control 38, 645 (1991).CrossRefGoogle Scholar
15.Rèmiens, D., Tirlet, J. F., Jaber, B., Thierry, B., and Moriamez, C., J. Europ. Ceram. Soc. 13, 493 (1994).CrossRefGoogle Scholar
16.Fox, G. R., McKinstry, S. T., and Krupanidhi, S. B., J. Mater. Res. 10, 1508 (1995).CrossRefGoogle Scholar
17.Sreenivas, K., Reaney, I., Maeder, T., and Setter, N., J. Appl. Phys. 75, 232 (1994).CrossRefGoogle Scholar
18.Rèmiens, D., Rose, B., Carré, M., and Hornung, V., J. Appl. Phys. 68, 2450 (1990).CrossRefGoogle Scholar
19.Descamps, M., Rèmiens, D., Jaber, B., Chabal, L., and Thierry, B., Appl. Phys. Lett. 66, 685 (1995).CrossRefGoogle Scholar
20.Maeder, T., Muralt, P., Sagalowicz, L., and Setter, N., in Proc. 1st European Meeting on Integrated Ferroelectrics (EMIF1), Nijmegen (3–5 July 1995).Google Scholar
21.Jaber, B., Rèmiens, D., and Thierry, B., Appl. Phys. Lett. (in press).Google Scholar
22.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
23.Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., Jpn. J. Appl. Phys. 24, suppl. 24–3, 13 (1985).CrossRefGoogle Scholar
24.Perrin, A., Guilloux-Viry, M., Thivet, C., Jegaden, J. C., Sergent, M., and Lannie, J. Le, JEOL News 30E, 26 (1992).Google Scholar
25.Roy, R. A. and Etzold, K. F., J. Mater. Res. 7, 1455 (1992).CrossRefGoogle Scholar
26.Kim, C. J. J., Yoon, D. S., Lee, J. S., and Choi, C. Gi, J. Appl. Phys. 76, 7478 (1994).CrossRefGoogle Scholar