Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:03:58.920Z Has data issue: false hasContentIssue false

Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

E.S. Park*
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
H.J. Chang
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
J.Y. Lee
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
D.H. Kim
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
*
a)Address all correspondence to this author. e-mail: espark@deas.harvard.edu
Get access

Abstract

The effect of replacement of Ti with Y or Nb in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses (BMGs) has been investigated. The minor addition (MA) of Y (Y–Ti: +58 kJ/mol) induced phase separation into Y-rich crystalline particles and Ti-rich amorphous matrix, while the MA of Nb (Nb–Ti: +10 kJ/mol) led to nanocrystallization in Ti-rich BMGs with icosahedral nuclei. This result indicates that MA of elements having positive enthalpy of mixing can induce a different degree of instability in the single amorphous matrix depending on the amount of repulsive interaction energy. In particular, MA of Nb (up to 4 at.%) significantly increased the compressive fracture strain (ϵf) up to ∼9.35 ± 0.2%, which indicates that the plasticity of BMGs can be enhanced by the size-modulated icosahedral phase embedded in the amorphous matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, W.H.: Role of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 2007CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3Xing, L-Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 2001CrossRefGoogle Scholar
4Lee, M.H., Lee, J.Y., Bae, D.H., Kim, W.T., Sordelet, D.J., Kim, D.H., Lee, M.H., Bae, D.H., Kim, W.T.Kim, D.H.: A development of Ni-based alloys with enhanced plasticity. Mater. Trans. 44, 2084 2003CrossRefGoogle Scholar
5Park, E.S., Lee, J.Y.Kim, D.H.: Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glasses. J. Mater. Res. 20, 2379 2005CrossRefGoogle Scholar
6Park, E.S., Chang, H.J., Kim, D.H., Ohkubo, T.Hono, K.: Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scripta Mater. 54, 1569 2006CrossRefGoogle Scholar
7Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
8Park, E.S.Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 2006CrossRefGoogle Scholar
9Park, E.S., Kyeong, J.S.Kim, D.H.: Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr,Hf)– (Gd,Y)–Al metallic glasses. Scripta Mater. 57, 49 2007CrossRefGoogle Scholar
10Kim, Y.C., Na, J.H., Park, J.M., Lee, J.K., Kim, W.T.Kim, D.H.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
11Kim, Y.C., Kim, W.T.Kim, D.H.: A development of Ti-based bulk metallic glasses. Mater. Sci. Eng., A 375–377, 127 2004CrossRefGoogle Scholar
12Park, J.M., Chang, H.J., Han, K.H., Kim, W.T.Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scripta Mater. 53, 1 2005CrossRefGoogle Scholar
13Guo, F., Wang, H.J., Poon, S.J.Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 2005CrossRefGoogle Scholar
14Inoue, A., Zhang, T., Saida, J.Matsushita, M.: Enhancement of strength and ductility in Zr-based bulk amorphous alloys by precipitation of quasicrystalline phase. Mater. Trans., JIM 41, 1511 2000CrossRefGoogle Scholar
15Eckert, J., Das, J., Pauly, S.Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 2007CrossRefGoogle Scholar
16Gebert, A., Eckert, J.Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 1998CrossRefGoogle Scholar
17Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkub, T.Hono, K.: In-situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004CrossRefGoogle Scholar
18Park, B.J., Chang, H.J., Kim, W.T.Kim, D.H.: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004CrossRefGoogle Scholar
19Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H.Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 2005CrossRefGoogle Scholar
20Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A.Bhattacharyya, S.: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 2006CrossRefGoogle Scholar
21Park, E.S., Jeong, E.Y., Lee, J-K., Bea, J.C., Kwon, A.R., Gebert, A., Schultz, L., Chang, H.J.Kim, D.H.: In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system. Scripta Mater. 56, 197 2007CrossRefGoogle Scholar
22Lee, J.Y., Han, K.H., Park, J.M., Chattopadhyay, K., Kim, W.T.Kim, D.H.: Deformation and evolution of shear bands under compressive loading in bulk metallic glasses. Acta Mater. 54, 5271 2006CrossRefGoogle Scholar
23Zhang, Y., Chen, J., Chen, G.L.Liu, X.J.: Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl. Phys. Lett. 89, 131904 2006CrossRefGoogle Scholar
24Lee, S.W., Huh, M.Y., Chae, S.W.Lee, J.C.: Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater. 54, 1439 2006CrossRefGoogle Scholar
25Miedema, A.R.: The heat of formation of alloys. Philips Tech. Rev. 36, 217 1976Google Scholar
26Chen, M., Inoue, A., Zhang, W.Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 2006CrossRefGoogle ScholarPubMed
27Fan, C., Li, H., Kecskes, L.J., Tao, K., Choo, H., Liaw, P.K.Liu, C.T.: Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Phys. Rev. Lett. 96, 145506 2006CrossRefGoogle ScholarPubMed