Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:49:53.426Z Has data issue: false hasContentIssue false

Importance of soft solution processing for advanced inorganic materials

Published online by Cambridge University Press:  31 January 2011

Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Get access

Abstract

Based upon the analysis of materials cycling and processing on the earth, a thermodynamic concept for energetical and environmental problems has been proposed. It concludes that solution processing using aqueous solutions should be the most important processing even for advanced materials. According to this concept, energetical and environmental features of soft solution processing (SSP) are discussed in general, using also some particular examples, such as BaTiO3. Applications of the SSP are shown with special emphasis on hydrothermal and/or electrochemical synthesis of thin films and integration issues. Soft solution processing allows one to fabricate in aqueous solutions shaped/sized/oriented ceramics in only one step, without excess energies for firing/sintering or melting and without expensive equipment, providing an environmentally friendly route for the preparation of advanced ceramic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murota, T., Economy of Entropy and Energy (Toyo Keizai Shinposha Ltd., Tokyo, 1983), in Japanese.Google Scholar
2.Yoshimura, M. and Suchanek, W., Solid State Ionics 98, 197 (1997).CrossRefGoogle Scholar
3.Cross, L. E., Ceram. Trans. 68, 15 (1996).Google Scholar
4.Proceedings of the FGM Symposium, October 23–24 1997, Osaka, Japan, edited by Hirai, T. (1997), in Japanese.Google Scholar
5.Ohring, M., The Materials Science of Thin Films (Academic Press, New York, 1992).Google Scholar
6.Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Klein, L. (Noyes Publ., 1988).Google Scholar
7.Sol-Gel Optics. Processing and Applications, edited by Klein, L. (Kluwer Academic Publishers, Boston/Dordrecht/London, 1994).Google Scholar
8.Lokhande, C. D. and Pawar, S. H., Phys. Status Solidi A 111, 17 (1989).CrossRefGoogle Scholar
9.Yoshimura, M., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 457.Google Scholar
10.Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).Google Scholar
11.Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N., Ceram. Trans. 15, 427 (1990).Google Scholar
12.Yoo, S-E., Hayashi, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 73, 2561 (1990).CrossRefGoogle Scholar
13.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Mater. Res. 9, 2109 (1994).CrossRefGoogle Scholar
14.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 77, 2889 (1994).Google Scholar
15.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 78, 1521 (1995).Google Scholar
16.Kajiyoshi, K. and Yoshimura, M., Eur. J. Solid State Inorg. Chem. 33, 623 (1996).Google Scholar
17.Kajiyoshi, K., Hamaji, Y., Tomono, K., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 79, 613 (1996).Google Scholar
18.Kajiyoshi, K., Yoshimura, M., Hamaji, Y., Tomono, K., and Kasanami, T., J. Mater. Res. 11, 169 (1996).CrossRefGoogle Scholar
19.Yoshimura, M., Urushihara, W., Yashima, M., and Kakihana, M., Intermetallics 3, 125 (1995).CrossRefGoogle Scholar
20.Cho, W-S. and Yoshimura, M., J. Mater. Res. 12, 833 (1997).Google Scholar
21.Yoshimura, M., Han, K. S., and Tsurimoto, S., Solid State Ionics 106 (1998, in press).Google Scholar
22.Cho, W. S. and Yoshimura, M., Jpn. J. Appl. Phys. 36, 1216 (1997).Google Scholar
23.Cho, W. S., Yashima, M., Kakihana, M., Kudo, A., Sakata, T., and Yoshimura, M., J. Am. Ceram. Soc. 80, 765 (1997).CrossRefGoogle Scholar
24.Cho, W. S., Yashima, M., Kakihana, M., Kudo, A., Sakata, T., and Yoshimura, M., Appl. Phys. Lett. 68, 137 (1996).Google Scholar
25.Gogotsi, Y. G. and Yoshimura, M., Nature (London) 367, 628 (1994).CrossRefGoogle Scholar
26.Kakihana, M., Yoshimura, M., Mazaki, H., Yasuoka, H., and Borjesson, L., J. Appl. Phys. 71, 3904 (1992).CrossRefGoogle Scholar
27.Kakihana, M., J. Sol-Gel Sci. Technol. 6, 7 (1996).CrossRefGoogle Scholar
28.Biomimetic Materials Chemistry, edited by Mann, S. (VCH, Germany, 1996).Google Scholar
29.Ohba, Y., Miyauchi, M., Sakai, E., and Daimon, M., Jpn. J. Appl. Phys. 34, 5216 (1995).CrossRefGoogle Scholar
30.Chen, Q., Qian, Y., Chen, Z., Zhou, G., and Zhang, Y., Mater. Lett. 22, 93 (1995).Google Scholar
31.Chen, Q. W., Qian, Y. T., Chen, Z. Y., Jia, Y. B., Zhou, G. E., Li, X. G., and Zhang, Y. H., Physica Status Solidi A–Applied Research 156, 381 (1996).Google Scholar
32.Abe, M., Tamaura, Y., Goto, Y., Kitamura, N., and Gomi, M., J. Appl. Phys. 61, 3211 (1987).Google Scholar
33.Fendler, J. H. and Meldrum, F. C., Adv. Mater. 7, 607 (1995).Google Scholar
34.Yokoyama, N., Muto, S., Imamura, K., Takatsu, M., Mori, T., Sugiyama, Y., Sakuma, Y., Nakao, H., and Adachihara, T., Solid-State Electron. 40, 505 (1996).CrossRefGoogle Scholar
35.Lange, F. F., Science 273, 903 (1996).Google Scholar
36.Switzer, J. A., Hung, C. J., Breyfogle, B. E., Shumsky, M. G., Vanleeuwen, R., and Golden, T. D., Science 264, 1573 (1994).CrossRefGoogle Scholar
37.Tuller, H. L., Ceram. Trans. 68, 97 (1996).Google Scholar
38.Gutmann, R. J., Chow, T. P., Lakshminarayanan, S., Price, D. T., Steigerwald, J. M., You, L., and Murarka, S. P., Thin Solid Films 270, 472 (1995).CrossRefGoogle Scholar
39.Yoshimura, M., Suchanek, W., Watanabe, T., Sakurai, B., and Abe, M., J. Mater. Res. 13, 875 (1998).Google Scholar
40.Otaki, H., Hydration of Ions (Kyoritsu Shuppan Publ. Ltd., Tokyo, 1995), in Japanese.Google Scholar
41.JANAF Thermochemical Tables (National Bureau of Standards, American Chemical Society, American Institute of Physics, 19681982).Google Scholar
42.Livage, J., Brec, R., Catherine, Y., Cot, L., Figlarz, M., Portier, J., Rouxel, J., and Tournoux, M., Ann. Chim. 14, 353 (1989), in French.Google Scholar
43.Aksay, I. A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P. M., and Gruner, S. M., Science 273, 892 (1996).Google Scholar
44.Jeon, N. L., Clem, P. G., Nuzzo, R. G., and Payne, D. A., J. Mater. Res. 10, 2996 (1995).Google Scholar
45.Itoh, T., Hori, S., Abe, M., and Tamaura, Y., J. Appl. Phys. 69, 5911 (1991).Google Scholar