Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:03:33.288Z Has data issue: false hasContentIssue false

Identification of fracture sequences during sharp indentation of polycrystalline Al2O3

Published online by Cambridge University Press:  03 March 2011

Kaiyang Zeng
Affiliation:
Materials Science and Engineering, Royal Institute of Technology, S-100 44 Stockholm, Sweden
David Rowcliffe
Affiliation:
Materials Science and Engineering, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Get access

Abstract

The effects of loading and unloading rate on fracture features formed during sharp indentation of polycrystalline Al2O3 have been studied. It was found that there is a transition between intergranular and transgranular fracture if the loading rate is increased by a factor of 104 during the whole indentation cycle. By varying the loading or unloading rate during indentation, and correlating the corresponding dependence of fracture features, the part of the indentation cycle can be identified in which specific segments of cracks are generated. Hence, the fracture sequence during indentation is established. The fracture sequence for polycrystalline Al2O3 is compared with those reported from direct observation in optically transparent materials such as soda-lime glass and various single crystal ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lawn, B. and Wilshaw, R., J. Mater. Sci. 10, 1049 (1975).Google Scholar
2Lawn, B. R. and Marshall, D. B., Fracture Mechanics of Ceramics, Vol. 3, Flaws and Testing, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1978), p. 205.Google Scholar
3Lawn, B. R., Hockey, B. J., and Richter, H., J. Microscopy 130 (Pt 3), 295 (1983).CrossRefGoogle Scholar
4Breder, K., Zeng, K., and Rowcliffe, D. J., Ceram. Eng. Sci. Proc. 10, 1005 (1989).CrossRefGoogle Scholar
5Rowcliffe, D. J., in Erosion of Ceramic Materials, edited by Ritter, J. E. (Trans. Tech. Pub., Bay Village, OH, 1991), p. 1.Google Scholar
6Marshall, D. B., Noma, T., and Evans, A. G., J. Am. Ceram. Soc. 65, C-175 (1982).Google Scholar
7Zeng, K., Breder, K., Rowcliffe, D. J., and Herrström, C., J. Mater. Sci. 27, 3789 (1992).CrossRefGoogle Scholar
8Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
9Chantikul, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 539 (1981).Google Scholar
10Lawn, B. R. and Fuller, E. R., J. Mater. Sci. 10, 2016 (1975).Google Scholar
11Lawn, B. R. and Evans, A. G., J. Mater. Sci. 12, 2195 (1977).Google Scholar
12Hagan, J. T., J. Mater. Sci. 14, 2975 (1979).CrossRefGoogle Scholar
13Lathabai, S., Rödel, J., Dabbs, T., and Lawn, B. R., J. Mater. Sci. 26, 2157 (1991).CrossRefGoogle Scholar
14Lathabai, S., Rödel, J., Dabbs, T., and Lawn, B. R., J. Mater. Sci. 26, 2313 (1991).Google Scholar
15Laursen, T. A. and Simo, J. C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
16Hagan, J. T. and Swain, M. V., J. Phys. D: Appl. Phys. 11, 2091 (1978).Google Scholar
17Lawn, B. R., Evans, A. G., and Marshall, D. B., J. Am. Ceram. Soc. 63, 574 (1980).Google Scholar
18Marshall, D. B., Lawn, B. R., and Evans, A. G., J. Am. Ceram. Soc. 65, 561 (1982).Google Scholar
19Cook, R. F. and Roach, D. H., J. Mater. Res. 1, 589 (1986).Google Scholar
20Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
21Tandon, R., Green, D. J., and Cook, R. F., J. Am. Ceram. Soc. 73, 2619 (1990).Google Scholar
22Smith, S. M. and Scattergood, R. O., J. Am. Ceram. Soc. 75, 305 (1992).Google Scholar
23Cook, R. F. and Liniger, E. G., J. Mater. Sci. 27, 4751 (1992).Google Scholar
24Rice, R. W., in Treatise on Materials Science and Technology, edited by MacCrone, R. K. (Academic Press, New York, 1977), Vol. 11, p. 199.Google Scholar
25Rice, R. W., in Fractography of Ceramic and Metal Failure, edited by Mecholsky, J. J. Jr. and Powell, S. R., Jr. (Am. Soc. Test Mater., Spe. Tech. Publ., 827, ASTM, 1984), p. 5.Google Scholar
26Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y-W., and Hockey, B. J., J. Am. Ceram. Soc. 70, 279 (1987).Google Scholar
27Chantikul, P., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 73, 2419 (1990).CrossRefGoogle Scholar
28Braun, L. M., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 75, 3049 (1992).Google Scholar
29Cook, R. F., Acta metall. mater. 38, 1083 (1990).Google Scholar
30Cook, R. F. and Schrott, A. G., J. Am. Ceram. Soc. 71, 50 (1988).Google Scholar
31Cook, R. F., Pascucci, M. R., and Rhodes, W. H., J. Am. Ceram. Soc. 73, 1873 (1990).CrossRefGoogle Scholar
32Mecholsky, J. J., J. Am. Ceram. Soc. 64, 563 (1981).Google Scholar
33Mecholsky, J. J. and Freiman, S. W., in Fractography and Materials Science, edited by Gilbertson, L. N. and Zipp, R. D. (Am. Soc. Test Mater., Spe. Tech. Publ., 733, ASTM, 1981), p. 246.Google Scholar
34McKinney, K. R., Mecholsky, J. J. Jr., and Freiman, S. W., J. Am. Ceram. Soc. 62, 336 (1979).Google Scholar
35Zeng, K., Breder, K., and Rowcliffe, D. J., Ceram. Eng. Sci. Proc. 12, 2233 (1991).Google Scholar
36Zeng, K., Breder, K., and Rowcliffe, D. J., J. Am. Ceram. Soc. 76, 1673 (1993).CrossRefGoogle Scholar
37Heuer, A. H., J. Am. Ceram. Soc. 52, 510 (1969).CrossRefGoogle Scholar
38Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68, 604 (1985).CrossRefGoogle Scholar
39Kirchner, H. P. and Larchuk, T. J., J. Am. Ceram. Soc. 65, 506 (1982).CrossRefGoogle Scholar
40Marshall, D. B., Evans, A. G., and Nisenholz, Z., J. Am. Ceram. Soc. 66, 580 (1983).Google Scholar
41Yoffe, E. H., Philos. Mag. A 46, 617 (1982).Google Scholar
42Giannakopoulos, A. E., Larsson, P-L., and Vestergaard, R., Int. J. Solids and Structures (1994, in press).Google Scholar