Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T13:46:45.832Z Has data issue: false hasContentIssue false

Hydrothermal synthesis, phase evolution, and optical properties of Eu3+-doped KF–YF3 system materials

Published online by Cambridge University Press:  17 October 2012

Chunyan Cao
Affiliation:
College of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China
Hyun Kyoung Yang
Affiliation:
Department of Physics, Pukyong National University, Busan 608-737, Korea
Byung Kee Moon
Affiliation:
Department of Physics, Pukyong National University, Busan 608-737, Korea
Byung Chun Choi
Affiliation:
Department of Physics, Pukyong National University, Busan 608-737, Korea
Jung Hyun Jeong*
Affiliation:
Department of Physics, Pukyong National University, Busan 608-737, Korea
Kwang Ho Kim
Affiliation:
School of Materials Science and Engineering, Pusan National University, Busan 609-735, Korea
*
a)Address all correspondence to this author. e-mail: jhjeong@pknu.ac.kr
Get access

Abstract

Through a polyethylene-glycol-assisted hydrothermal method, a series of potassium fluoride (KF)–Yttrium (III) fluoride (YF3) system materials have been synthesized. By controlling the reactant ratios of KF: rare earth ions (RE3+), the hydrothermal temperatures, and the pH values of the prepared solutions, the final products can evolve among the orthorhombic phase of YF3 and/or the tetragonal phase of potassium triyttrium decafluoride (KY3F10) and/or the cubic phase of potassium yttrium tetrafluoride (KYF4). The final products are characterized by the x-ray diffraction (XRD) patterns, the field-emission scanning electron microscopy (FE-SEM) images, the energy-dispersive spectroscopy (EDS) patterns, the photoluminescence (PL) spectra, and the luminescent dynamic decay curves. The XRD patterns of the samples suggest the phase evolution of the final products. The FE-SEM images and the EDS patterns prove that. Europium ion (Eu3+) acting as a probe, its PL spectra and the luminescent decay curves all put together prove the phase evolution of the final products. The research can be extended to study the other KF–REF3 system materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mai, H.X., Zhang, Y.W., Si, R., Yan, Z.G., Sun, L.D., You, L.P., and Yan, C.H.: High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426 (2006).CrossRefGoogle ScholarPubMed
Yan, B. and Wu, J.H.: Facile composite synthesis and photoluminescence of NaGd(MoO4)2: Ln3+ (Ln = Eu, Tb) submicrometer phosphors. J. Mater. Res. 24, 32 (2009).CrossRefGoogle Scholar
Yu, M., Wang, H., Lin, C.K., Li, G.Z., and Lin, J.: Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure. Nanotechnology 17, 3245 (2006).CrossRefGoogle Scholar
Li, C.X. and Lin, J.: Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 20, 6831 (2010).CrossRefGoogle Scholar
Liang, C-H., Chang, Y-C., Chang, Y-S., and Wu, S.: Photoluminescence properties of Eu3+-doped BaY2ZnO5 phosphors under near-ultraviolet irradiation. J. Mater. Res. 25, 850 (2010).CrossRefGoogle Scholar
Menyuk, N., Dwight, K., and Pierce, J.W.: NaYF4: Yb, Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159 (1972).CrossRefGoogle Scholar
Sommerdijk, J.L. and Bril, A.: Phosphors for the conversion of infrared radiation into visible light. Philips Tech. Rev. 34, 1 (1974).Google Scholar
Downing, E., Hesselink, L., Ralston, J., and Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996).CrossRefGoogle Scholar
Cao, C.Y., Yang, H.K., Chung, J.W., Moon, B.K., Choi, B.C., Jeong, J.H., and Kim, K.H.: Ce3+/Tb3+ activated GdF3, KGdF4, and CeF3 submicro/nanocrystals: Synthesis, phase evolution, and optical properties. J. Mater. Res. 26, 2916 (2011).CrossRefGoogle Scholar
Shionoya, S. and Yen, W.M.: Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).Google Scholar
Diamente, P.R., Raudsepp, M., and van Veggel, F.C.J.M.: Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv. Funct. Mater. 17, 363 (2007).CrossRefGoogle Scholar
Liu, X.H., Wang, L.M., Wang, Z.Y., and Li, Z.Q.: Synthesis of biocompatible and luminescent NaGdF4:Yb, Er@Carbon nanoparticles in water-in-oil microemulsion. J. Mater. Res. 26, 82 (2011).CrossRefGoogle Scholar
Krämer, K.W., Biner, D., Frei, G., Güdel, H.U., Hehlen, M.P., and Lüthi, S.R.: Hexagonal sodium yttrium fluoride-based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244 (2004).CrossRefGoogle Scholar
Wegh, R., Donker, H., Oskam, K., and Meijerink, A.: Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663 (1999).CrossRefGoogle ScholarPubMed
Möbert, P.E.A., Diening, A., Heumann, E., Huber, G., and Chai, B.H.T.: Room-temperature continuous-wave upconversion-pumped laser emission in Ho, Yb:KYF4 at 756, 1070, and 1390 nm. Laser Phys. 8, 210 (1998).Google Scholar
Braud, A., Girard, S., Doualan, J.L., Thuau, M., Moncorgé, R., and Tkachuk, A.M.: Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm. Phys. Rev. B 61, 5280 (2000).CrossRefGoogle Scholar
Yang, D.M., Li, G.G., Kang, X.J., Cheng, Z.Y., Ma, P.A., Peng, C., Lian, H.Z., Li, C.X., and Lin, J.: Room temperature synthesis of hydrophilic Ln3+-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: Energy transfer, size-dependent and color-tunable luminescence properties. Nanoscale 2, 3450 (2012).CrossRefGoogle Scholar
Kodama, N. and Watanabe, Y.: Visible quantum cutting through downconversion in Eu3+-doped KGd3F10 and KGd2F7 crystals. Appl. Phys. Lett. 84, 4141 (2004).CrossRefGoogle Scholar
Lee, T., Luo, L., Diau, W., Chen, T., Cheng, B., and Tung, C.: Visible quantum cutting through downconversion in green-emitting K2GdF5:Tb3+ phosphors. Appl. Phys. Lett. 89, 131121 (2006).CrossRefGoogle Scholar
Yang, L.W., Zhang, Y.Y., Li, J.J., Li, Y., Zhong, J.X., and Chu, P.K.: Magnetic and upconverted luminescent properties of multifunctional lanthanide-doped cubic KGdF4 nanocrystals. Nanoscale 2, 2805 (2010).CrossRefGoogle ScholarPubMed
Wong, H-T., Vetrone, F., Naccache, R., Chan, H.L.W., Hao, J.H., and Capobianco, J.A.: Water-dispersible ultrasmall multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21, 16589 (2011).CrossRefGoogle Scholar
Cao, C.Y., Yang, H.K., Chung, J.W., Moon, B.K., Choi, B.C., Jeong, J.H., and Kim, K.H.: Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+-doped KGdF4 nanocrystals. J. Mater. Chem. 21, 10342 (2011).CrossRefGoogle Scholar
Li, C.X., Xu, Z.H., Yang, D.M., Cheng, Z.Y., Hou, Z.Y., Ma, P.A., Lian, H.Z., and Lin, J.: Well-dispersed KRE3F10 (RE = Sm–Lu, Y) nanocrystals: Solvothermal synthesis and luminescence properties. CrystEngComm 14, 670 (2012).CrossRefGoogle Scholar
Liang, J.H., Peng, Q., Wang, X., Zheng, X., Wang, R.J., Qiu, X.P., Nan, C.W., and Li, Y.D.: Chromate nanorods/nanobelts: General synthesis, characterization, and properties. Inorg. Chem. 44, 9405 (2005).CrossRefGoogle ScholarPubMed
Deshazer, L.G. and Dieke, G.H.: Spectra and energy levels of Eu3+ in LaCl3. J. Chem. Phys. 38, 2190 (1963).CrossRefGoogle Scholar
Yu, M., Lin, J., and Fang, J.: Silica spheres coated with YVO4:Eu3+ layers via sol−gel process: A simple method to obtain spherical core−shell phosphors. Chem. Mater. 17, 1783 (2005).CrossRefGoogle Scholar
Tao, F., Wang, Z.J., Yao, L.Z., Cai, W.L., and Li, X.G.: Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. J. Phys. Chem. C 111, 3241 (2007).CrossRefGoogle Scholar
Chen, X.Y. and Liu, G.K.: The standard and anomalous crystal-field spectra of Eu3+. J. Solid State Chem. 178, 419 (2005).CrossRefGoogle Scholar