Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:56:19.882Z Has data issue: false hasContentIssue false

Hydrothermal synthesis and sintering of nickel and manganese-zinc ferrites

Published online by Cambridge University Press:  31 January 2011

Anderson Dias*
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Escola de Engenharia-UFMG, Rua Espírito Santo, 35/sala 206, 30160–030, Belo Horizonte, MG, Brazil
Vicente Tadeu Lopes Buono
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Escola de Engenharia-UFMG, Rua Espírito Santo, 35/sala 206, 30160–030, Belo Horizonte, MG, Brazil
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The influence of the starting materials on the crystalline phases observed after hydrothermal synthesis of nickel and manganese-zinc ferrites was investigated. The combination of sulfates and sodium hydroxide showed the best results for the conditions studied. The morphological parameters of MnZn ferrites produced at different hydrothermal conditions (110–190 °C, 4–30 h) were analyzed. Changes in lattice parameter, particle size, density, size and total volume of pores, and in the surface area of the particles were analyzed as a function of temperature and processing time. The sintering process was employed in order to verify the reactivity of the hydrothermal powders at controlled atmosphere. High density and surface homogeneous ceramic bodies were obtained, without zinc volatilization. Lattice parameter variations were associated with changes in the cations distribution of the spinel during sintering.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Waanders, W., Electron. Comp. Applications 9, 146 (1993).Google Scholar
2.Komarneni, S., Fregeau, E., Breval, E., and Roy, R., J. Am. Ceram. Soc. 71, C-26 (1988).CrossRefGoogle Scholar
3.Dias, A., Moreira, R. L., and Mohallem, N. D. S., J. Phys. Chem. Solids 58, 543 (1997).CrossRefGoogle Scholar
4.Hall, W. H., Proc. Phys. Soc. 62, 741 (1949).CrossRefGoogle Scholar
5.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1967).Google Scholar
6.Lowell, S. and Shields, J. E., Powder Surface Area and Porosity (Chapman & Hall Ltd., New York, 1987).Google Scholar
7.Oguri, Y., Riman, R. E., and Bowen, H. K., J. Mater. Sci. 23, 2897 (1988).CrossRefGoogle Scholar
8.Ohlweiler, O. A., Inorganic Chemistry (Edgard Blücher Ltd., 1973).Google Scholar
9.Clearfield, A., Gadalla, A. M., Marlow, W. H., and Livingston, T. W., J. Am. Ceram. Soc. 72, 1789 (1989).CrossRefGoogle Scholar
10.Sheppard, L. M., Am. Ceram. Soc. Bull. 68, 979 (1989).Google Scholar
11.Tsuji, T., in Adv. Ceram. 15, 573 (1986).Google Scholar
12.Iwase, K., Takada, T., and Kiyama, M., Brit. Patent 1,142,214 (1969).Google Scholar
13.Tani, E., Yoshimura, M., and Sōmiya, S., J. Am. Ceram. Soc. 66, 11 (1983).CrossRefGoogle Scholar
14.Dias, A., Buono, V. T. L., Vilela, J. M. C., Andrade, M. S., and Lima, T. M., J. Mater. Sci. 32, 4715 (1997).CrossRefGoogle Scholar
15.Majima, K., Hasegawa, M., Katsuyama, S., Nagai, H., and Mishima, S., J. Mater. Sci. Lett. 12, 185 (1993).CrossRefGoogle Scholar
16.Majima, K., Hasegawa, M., Yokota, M., Nagai, H., and Mishima, S., Mater. Trans. JIM 34, 556 (1993).CrossRefGoogle Scholar
17.Zaharescu, M., Balasoni, M., Crisan, M., Crisan, D., Tavala, T., and Moser, V., Rev. Roumaine Chimie 29, 247 (1984).Google Scholar
18.Kimura, O. and Chiba, A., in Adv. Ceram. 15, 115 (1986).Google Scholar
19.Dawson, W. J., Am. Ceram. Soc. Bull. 67, 1673 (1988).Google Scholar
20.Sōmiya, S., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J. H., Jr., Chen, Y., and Sibley, W. A. (Mater. Res. Soc. Symp. Proc. 24, New York, 1984), p. 255.Google Scholar
21.Matson, D. W. and Smith, R. D., J. Am. Ceram. Soc. 72, 871 (1989).CrossRefGoogle Scholar
22.Stambaugh, E. P., Dawson, W. J., Adair, J. H., and Kim, B. C., Technology for new/improved hydrothermal processes, Batelle Handbook (Dec. 1984).Google Scholar
23.Mascolo, G., Marino, O., and Pappalardo, W., Trans. Brit. Ceram. Soc. 81, 75 (1982).Google Scholar
24.Kim, Y. S., in Treatise Mater. Sci. Technol. 9, 51 (1976).CrossRefGoogle Scholar
25.Itatani, K., Koizumi, K., Howell, F. S., Kishioka, A., and Kinoshita, M., J. Mater. Sci. 23, 3405 (1988).CrossRefGoogle Scholar
26.Haberko, K. and Pyda, W., in Adv. Ceram. 12, 778 (1984).Google Scholar
27.Sainanthip, P. and Amarakoon, V. R. W., J. Am. Ceram. Soc. 71, 644 (1988).CrossRefGoogle Scholar
28.Tseng, T. Y. and Lin, J. C., IEEE Trans. Magn. 25, 4405 (1989).CrossRefGoogle Scholar
29.Gallagher, P. K., Gyorgy, E. M., and Johnson, D. W., Jr., Am. Ceram. Soc. Bull. 57, 812 (1978).Google Scholar
30.Brewer, J. A., Moore, R. H., and Reed, J. S., Am. Ceram. Soc. Bull. 60, 212 (1981).Google Scholar