Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:52:01.583Z Has data issue: false hasContentIssue false

Hydrothermal BaTiO3 thin films from nanostructured Ti templates

Published online by Cambridge University Press:  02 March 2011

Hasan Akyıldız
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara, Turkey
Michelle D. Casper
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
Seymen M. Aygün
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
Peter G. Lam
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
Jon P. Maria*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
*
a)Address all correspondence to this author. e-mail: jpmaria@ncsu.edu
Get access

Abstract

Polycrystalline BaTiO3 thin films have been prepared by hydrothermal reaction with sputter-deposited nanostructured reactive Ti templates designed to control net diffusion direction and distance. Templates were prepared in two morphologies, i.e., planar and nanopillar. The samples produced from flat templates showed sluggish transformation kinetics and an eventual termination of reaction without fully consuming the Ti metal. Templates with pillar morphology, on the other hand, could be transformed to phase-pure BaTiO3, independent of the template thickness. In the as-precipitated state, those films revealed a permittivity of ~1000 and loss tangent values around 0.1 with mild dispersion in the kilohertz frequency range. Annealing these films under forming gas containing 1 vol% H2 balance N2 for 3 h at 200 °C decreased high-field losses to 0.06 and reduced dispersion. Mn incorporation as an in situ acceptor dopant was also explored. Addition of Mn during hydrothermal treatment further improved the electrical properties. Annealing under the same postgrowth conditions virtually eliminated the frequency dispersion in the range of 1 kHz to 1 MHz, while maintaining permittivity values in the range of 350.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Henning, D., Klee, M., and Waser, R.: Advanced dielectrics: Bulk ceramics and thin films. Adv. Mater.3(7/8), 334 (1991).CrossRefGoogle Scholar
2.Bhalla, A.S., Guo, R., and Roy, R.: The perovskite structure-a review of its role in ceramic science and technology. Mater. Res. Innovations 4, 3 (2000).CrossRefGoogle Scholar
3.Kwak, B.S., Zhang, K., Boyd, E.P., Erbil, A., and Wilkens, B.J.: Metalorganic chemical vapor deposition of BaTiO3 thin films. J. Appl. Phys. 69(2), 767 (1991).CrossRefGoogle Scholar
4.Chu, J.P., Mahalingam, T., Liu, C.F., and Wang, S.F.: Preparation and characterization of Mn-doped BaTiO3 thin films by magnetron sputtering. J. Mater. Sci. 42, 346 (2007).CrossRefGoogle Scholar
5.Kullmer, R.: Dielectric and ferroelectric properties of pulsed-laser deposited BaTiO3 films. Appl. Phys.Mater. Sci. Process. 65, 273 (1997).CrossRefGoogle Scholar
6.Wu, C.T. and Lu, F.H.: Electrochemical deposition of barium titanate films using a wide electrolytic range. Thin Solid Films. 398399, 621 (2001).CrossRefGoogle Scholar
7.Sharma, H.B. and Sarma, H.N.K.: Electrical properties of sol-gel processed barium titanate films. Thin Solid Films. 330, 178 (1998).CrossRefGoogle Scholar
8.Golego, N., Studenikin, S.A., and Cocivera, M.: Properties of dielectric BaTiO3 thin films prepared by spray pyrolysis. Chem. Mater. 10, 2000 (1998).CrossRefGoogle Scholar
9.Ihlefeld, J. and Laughlin, B.: H-Lowery, A., Borland, W., and Maria, J.-P.: Copper compatible barium titanate thin films for embedded passives. J. Electroceram. 14, 95 (2005).CrossRefGoogle Scholar
10.Chan, P.-H. and Lu, F.-H.: Low-temperature hydrothermal-galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates. Thin Solid Films. 517, 4782 (2009).CrossRefGoogle Scholar
11.Raj, P.M., Balaraman, D., Abothu, I.R., Yoon, C., Kang, N.-K., and Tummala, R.: Integrating high-k ceramic thin film capacitors into organic substrates via low-cost solution processing. IEEE Trans. Compon. Packag. Technol. 30(4), 585 (2007).CrossRefGoogle Scholar
12.Ishizawa, N., Banno, H., Hayashi, M., Yoo, S.E., and Yoshimura, M.: Preparation of BaTiO3 and SrTiO3 polycrystalline thin films on flexible polymer film substrate by hydrothermal method. Jpn. J. Appl. Phys. 29(11), 2467 (1990).CrossRefGoogle Scholar
13.Slamovich, E.B. and Aksay, I.A.: Structure evolution in hydrothermally processed (<100 °C) BaTiO3 films. J. Am. Ceram. Soc. 79(1), 239 (1996).CrossRefGoogle Scholar
14.Chien, A.T., Xu, X., Kim, J.H., Sachleben, J., Speck, J.S., and Lange, F.F.: Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis. J. Mater. Res. 14(8), 3330 (1999).CrossRefGoogle Scholar
15.Balaraman, D., Raj, P.M., Wan, L., Abothu, I.R., Bhattacharya, S., Dalmia, S., Lance, M.J., Swaminathan, M., Sacks, M.D., and Tummala, R.R.: BaTiO3 films by low-temperature hydrothermal techniques for next generation packaging applications. J. Electroceram. 13, 95 (2004).CrossRefGoogle Scholar
16.Hou, R.Z., Wu, A., and Vilarinho, P.M.: Low-temperature hydrothermal deposition of (BaxSr1-x)TiO3 thin films on flexible polymeric substrates for embedded applications. Chem. Mater. 21, 1214 (2009).CrossRefGoogle Scholar
17.Bacsa, R.R., Dougherty, J.P., and Pilione, L.J.: Low-temperature synthesis of BaTiO3 thin films on silicon substrates by hydrothermal reaction. Appl. Phys. Lett. 63(8), 1053 (1993).CrossRefGoogle Scholar
18.Pilleux, M.E. and Fuenzalida, V.M.: Hydrothermal BaTiO3 films on silicon: Morphological and chemical characterization. J. Appl. Phys. 74(7), 4664 (1993).CrossRefGoogle Scholar
19.Shi, E., Cho, C.-R., Jang, M.-S., Jeong, S.-Y., and Kim, H.J.: The formation mechanism of barium titanate thin film under hydrothermal conditions. J. Mater. Res. 9(11), 2914 (1994).CrossRefGoogle Scholar
20.Cho, C.-R., Shi, E., Jang, M.-S., Jeong, S.-Y., and Kim, S.-C.: Structural and electrical properties of BaTiO3 thin films on Si(100) substrate by hydrothermal synthesis. Jpn. J. Appl. Phys. 33, 4984 (1994).CrossRefGoogle Scholar
21.Cho, C.R., Jang, M.S., Jeong, S.Y., Lee, S.J., and Lim, B.M.: Ferroelectric properties of hydrothermally prepared BaTiO3 thin films on Si(100) substrates by low-temperature processing. Mater. Lett. 23, 203 (1995).CrossRefGoogle Scholar
22.Xu, W., Zheng, L., Xin, H., Lin, C., and Okuyama, M.: Hydrothermal BaTiO3 thin films on Ti-covered silicon: Characterization and growth mechanism. J. Electrochem. Soc. 143(3), 1133 (1996).CrossRefGoogle Scholar
23.Fuenzalida, V.M., Pilleux, M.E., and Eisele, I.: Adsorbed water on hydrothermal BaTiO3 films: Work function measurements. Vacuum. 55, 81 (1999).CrossRefGoogle Scholar
24.Seo, K.W. and Kong, H.G.: Hydrothermal preparation of BaTiO3 thin films. Korean. J. Chem. Eng. 17(4), 428 (2000).Google Scholar
25.Hoffmann, T., Doll, T., and Fuenzalida, V.M.: Fabrication of BaTiO3 microstructures by hydrothermal growth. J. Electrochem. Soc. 144(11), L292 (1997).CrossRefGoogle Scholar
26.Tan, C.K., Goh, G.K.L., Chi, D.Z., Lu, A.C.W., and Lok, B.K.: Hydrothermal growth of BaTiO3 thin films on printed circuit boards for integral capacitor applications. J. Electroceram. 16, 581 (2006).CrossRefGoogle Scholar
27.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M.: Preparation of tetragonal barium titanate thin film on titanium metal substrate by hydrothermal method. J. Am. Ceram. Soc. 74(2), 369 (1991).CrossRefGoogle Scholar
28.Bacsa, R., Ravindranathan, P., and Dougherty, J.P.: Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. J. Mater. Res. 7(2), 423 (1992).CrossRefGoogle Scholar
29.Zhu, W., Akbar, S.A., Asiaie, R., and Dutta, P.K.: Synthesis, microstructure and electrical properties of hydrothermally prepared ferroelectric BaTiO3 thin films. J. Electroceram. 2(1), 21 (1998).CrossRefGoogle Scholar
30.Lisoni, J.G., Piera, F.J., Sánchez, M., Soto, C.F., and Fuenzalida, V.M.: Water incorporation in BaTiO3 films grown under hydrothermal conditions. Appl. Surf. Sci. 134, 225 (1998).CrossRefGoogle Scholar
31.Xu, W.-P., Zheng, L., Lin, C., and Okuyama, M.: Mild hydrothermal synthesis of titanate films: From polycrystalline BaTiO3 to epitaxial PbTiO3. Philos. Mag. B. 77(1), 177 (1998).CrossRefGoogle Scholar
32.Xu, J., Zhai, J., and Yao, X.: Structure and dielectric nonlinear characteristics of BaTiO3 thin films prepared by low temperature process. J. Alloy. Comp. 467, 567 (2009).CrossRefGoogle Scholar
33.Wei, X.: Hydrothermal synthesis of BaTiO3 thin films on nanoporous TiO2 covered Ti substrates. J. Cryst. Growth. 286, 371 (2006).CrossRefGoogle Scholar
34.Tan, C.K. and Goh, G.K.L.: Growth and dielectric properties of solvothermal BaTiO3 polycrystalline thin films. Thin Solid Films. 515, 6572 (2007).CrossRefGoogle Scholar
35.McCormick, M.A. and Slamovich, E.B.: Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films. J. Eur. Ceram. Soc. 23, 2143 (2003).CrossRefGoogle Scholar
36.Lange, F.F. and Goh, G.K.L.: Hydrothermal epitaxial growth of perovskite films. J. Cer. Proc. Res. 2(1), 4 (2001).Google Scholar
37.Ihlefeld, J.F., Losego, M.D., Collazo, R., Borland, W.J., and Maria, J.-P.: Defect chemistry of nano-grained barium titanate films. J. Mater. Sci. 43, 38 (2008).CrossRefGoogle Scholar
38.Dong, M., Miao, H., Tan, G., and Pu, Y.: Effects of Mg-doping on the microstructure and properties of BaTiO3 ceramics prepared by hydrothermal method. J. Electroceram. 21, 573 (2008).CrossRefGoogle Scholar
39.Dick, B., Brett, M.J., Smy, T., Belov, M., and Freeman, M.R.: Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B. 19(5), 1813 (2001).CrossRefGoogle Scholar
40.Hung, K.-M., Hsieh, C.-S., Yang, W.-D., and Sun, Y.-J.: The prepatory optimal conditions of barium titanate thin film from a hydrothermal method at low temperature. J. Mater. Sci. 42, 2376 (2007).CrossRefGoogle Scholar
41.Xu, W.-P., Zheng, L., Lin, C., and Okuyama, M.: (111)-Oriented BaTiO3 thin films hydrothermally formed on TiO2/Si substrate. lntegr. Ferroelectr. 12, 233 (1996).CrossRefGoogle Scholar
42.Li, Y., Gao, X.P., Li, G.R., Pan, G.L., Yan, T.Y., and Zhu, H.Y.: Titanate nanofiber reactivity: Fabrication of MTiO3 (M=Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C. 113, 4386 (2009).CrossRefGoogle Scholar
43.Tong, X., Lin, Y.-H., Zhang, S., Wang, Y., and Nan, C.-W.: Preparation of Mn-doped BaTiO3 nanoparticles and their magnetic properties. J. Appl. Phys. 104, 066108 (2008).CrossRefGoogle Scholar
44.Ihlefeld, J.F.: Synthesis and properties of barium titanate solid solution thin films on copper substrates. Ph.D. Thesis, North Carolina State University, (2006).Google Scholar
45.Li, Y., Yao, X., Wang, X., and Zhang, L.: Studies of resistivity and dielectric properties of manganese-doped barium titanate sintered in pure nitrogen. Ferroelectrics. 384, 73 (2009).CrossRefGoogle Scholar
46.Wang, S.-F., Hsu, Y.-C., Chu, J.P., and Wu, C.-H.: Hexagonal Ba(Ti1-xMnx)O3 ceramics: Microstructural evolution and microwave dielectric properties. Appl. Phys. Lett. 88, 042909 (2006).CrossRefGoogle Scholar
47.Li, T., Li, L., Zhao, J., and Gui, Z.: Modulation effect of Mn2+ on dielectric properties of BaTiO3-based X7R materials. Mater. Lett. 44, 1 (2000).CrossRefGoogle Scholar
48.Tangsritrakul, J., Unruan, M., Ketsuwan, P., and Yimnirun, R.: Effects of manganese addition on the phase formation, microstructure, and electrical properties of barium titanate ceramics. Adv. Mat. Res. 5557, 97 (2008).Google Scholar
49.Moulson, A.J. and Herbert, J.M.: Electroceramics: Materials-Properties-Applications (John Wiley & Sons Press, England, 2003), p. 357.CrossRefGoogle Scholar