Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T18:59:03.582Z Has data issue: false hasContentIssue false

Hydrogen-alkali-metal-graphite ternary intercalation compounds

Published online by Cambridge University Press:  31 January 2011

Toshiaki Enoki
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Seiichi Miyajima
Affiliation:
College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156, Japan
Mizuka Sano
Affiliation:
Department of Chemistry, Kumamoto University, Kumamoto 860, Japan
Hiroo Inokuchi
Affiliation:
Institute for Molecular Science, Okazaki 444, Japan
Get access

Abstract

Alkali-metal-graphite intercalation compounds (alkali-metal-GIC's) absorb hydrogen in two ways: physisorption and chemisorption. Hydrogen uptake through the physisorption process occurs at low temperatures below about 200 K in higher stage alkali-metal-GIC's, where hydrogen molecules are stabilized to form a two-dimensional condensed phase in the galleries of the graphite sheets. The concentration of absorbed hydrogen molecules is saturated at a rate of H2/alkali metal atom ∼2. The hydrogen physisorption shows a strong isotope effect and a swelling effect on c-axis lattice expansion. In the case of hydrogen uptake through the chemisorption process, dissociated hydrogen species are stabilized in the intercalate spaces. The activity of the chemisorption increases in the order Cs < Rb < K. The introduction of hydrogen generates a charge transfer from the host alkali metal GIC's to the hydrogen since hydrogen has strong electron affinity. The hydrogenated potassium-GIC's have intercalates consisting of K+-H-K+ triple atomic layer sandwiches which are inserted between metallic graphite sheets. The inserted two-dimensional hydrogen layer is suggested to consist of H ions with a weakly metallic nature. The superconductivity of the hydrogenated potassium-GIC is also discussed in terms of the change in the electronic and lattice dynamical properties by hydrogen uptake. The hydrogen-absorption in alkali-metal-GIC's is an interesting phenomenon in comparison with that in transition metal hydrides from the point of hydrogen storage. The hydrogen-alkali-metal-ternary GIC's obtained from hydrogen absorption have novel electronic properties and lattice structures which provide attractive problems for GIC research. The studies of hydrogen-alkali-metal ternary GIC's are reviewed in this article.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kondow, T., Inokuchi, H., and Wakayama, N., J. Chem. Phys. 43, 3766 (1965).CrossRefGoogle Scholar
2Inokuchi, H., Wakayama, N., Kondow, T., and Mori, Y., J. Chem. Phys. 46, 837 (1967).CrossRefGoogle Scholar
3Wakayama, N., Mori, Y., and Inokuchi, H., J.Catal. 12, 15 (1968).CrossRefGoogle Scholar
4Kimura, K. and Inokuchi, H., J. Catal. 29, 49 (1973).CrossRefGoogle Scholar
5Enoki, T. and Inokuchi, H., J. Chem. Phys. 74, 6440 (1981).CrossRefGoogle Scholar
6Saehr, D. and Hérold, A., Bull. Soc. Chim. Fr. 3130 (1965).Google Scholar
7Colin, M. and Hérold, A., Bull. Soc. Chim. Fr. 1982 (1971).Google Scholar
8Lagrange, P., Metrot, A., and Hérold, A., C. R. Acad. Sc. Paris C278, 701 (1974).Google Scholar
9Furdin, G., Portmann, P., Hérold, A., and Zeller, C., C. R. Acad. Sc. Paris C282, 563 (1976).Google Scholar
10Lagrange, P., Portmann, M-H., and Hérold, A., C.R. Acad. Sc. Paris C283, 557 (1976).Google Scholar
11Watanabe, K., Soma, M., Onishi, T., and Tamaru, K., Nature, Phys. Sci. 233, 160 (1971).CrossRefGoogle Scholar
12Watanabe, K., Kondow, T., Onishi, T., and Tamaru, K., Chem. Lett. 477 (1972).CrossRefGoogle Scholar
13Watanabe, K., Kondow, T., Soma, M., Onishi, T., and Tamaru, K., Proc. R. Soc. London A333, 51 (1973).Google Scholar
14Lagrange, P., Metrot, A., and Hérold, A., C. R. Acad. Sc. Paris C275, 765 (1972).Google Scholar
15Lagrange, P. and Hérold, A., C. R. Acad. Sc. Paris C281, 381 (1975).Google Scholar
16Lagrange, P., Portmann, M-H., and Hérold, A., C.R. Acad. Sc. Paris C283, 511 (1976).Google Scholar
17Alefeld, G. and Völkl, J., Hydrogen in Metals (Springer, Berlin, (1978).CrossRefGoogle Scholar
18Hastings, J. B., Ellenson, W. B., and Fischer, J. E., Phys. Rev. Lett. 42, 1552 (1979).CrossRefGoogle Scholar
19Zabel, H., Moss, S. C., Caswell, N., and Solin, S.A., Phys. Rev. Lett. 43, 2022 (1979).CrossRefGoogle Scholar
20Suzuki, M., Ikeda, H., Suematsu, H., Endo, Y., Shiba, H., and Hutchings, M.T., J. Phys. Soc. Jpn. 49, 671 (1980).CrossRefGoogle Scholar
21Clarke, R., Caswell, N., Solin, S. A., and Horn, P. M., Phys. Rev. Lett. 43, 2018 (1979).CrossRefGoogle Scholar
22Clarke, R., Caswell, N., Solin, S.A., and Horn, P.M., Physica (Utrecht) 99B, 457 (1980).Google Scholar
23Terai, T. and Takahashi, Y., Synth. Metals 7, 49 (1983).CrossRefGoogle Scholar
24Doll, G. L., Eklund, P. C., and Senatore, G., Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 66 (1986).Google Scholar
25Terai, T. and Takahashi, Y., Carbon 22, 91 (1984).CrossRefGoogle Scholar
26Beaufils, J. P., Crowley, T., Rayment, T., Thomas, R. K., and White, J.W., Mol. Phys. 44, 1257 (1981).CrossRefGoogle Scholar
27Zabel, H., Rush, J. J., and Magerl, A., Synth. Metals 7, 251 (1983).CrossRefGoogle Scholar
28Smith, D., J. Chem. Phys. 68, 3222 (1978).CrossRefGoogle Scholar
29Kambe, N., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. B21, 3491 (1980).CrossRefGoogle Scholar
30Clarke, R., Gray, J. N., Homma, H., and Winokur, M. J., Phys. Rev. B24, 1407 (1981).Google Scholar
31Suzuki, M. and Suematsu, H., J. Phys. Soc. Jpn. 52, 2761 (1983).CrossRefGoogle Scholar
32Yamada, Y. and Naiki, I., J. Phys. Soc. Jpn. 51, 2174 (1982).CrossRefGoogle Scholar
33Mori, M., Moss, S. C., Jan, Y. M., and Zabel, H., Phys. Rev. B25, 1287 (1982).CrossRefGoogle Scholar
34Kondow, T., Ando, K., and Tomono, Y., Proc. of an Int. Conf. on Physics of Intercalation Compounds, Trieste, Italy, July 6–10, 1981 (Springer-Verlag, Berlin), p. 315.Google Scholar
35Terai, T., Nonaka, Y., Ohira, M., and Takahashi, Y., Synth. Metals 12, 219 (1985).CrossRefGoogle Scholar
36Kondow, T. and Mizutani, U., Synth. Metals 6, 141 (1983).CrossRefGoogle Scholar
37Kondow, T., Sagawa, M., Takeyama, T., Tomono, Y., Andow, K., and Mizutani, U., Synth. Metals 12, 213 (1985).CrossRefGoogle Scholar
38Kanazawa, I., Murakami, H., Sakurai, Y., Sano, M., Enoki, T., and Inokuchi, H., Synth. Metals 12, 225 (1985).CrossRefGoogle Scholar
39Sano, M., Kanazawa, I., Murakami, H., Sakurai, Y., Enoki, T., and Inokuchi, H., Chem. Phys. Lett. 122, 143 (1985).CrossRefGoogle Scholar
40Hérold, A. and Saehr, D., C. R. Acad. Sc. Paris C250, 545 (1960).Google Scholar
41Colin, M. and Hérold, A., C. R. Acad. Sc. Paris C269, 1302 (1969).Google Scholar
42Hérold, A. and Lagrange, P., Mater. Sci. Engr. 31, 33 (1977).CrossRefGoogle Scholar
43Guérard, D., Takoudjou, C., and Rousseaux, F., Synth. Metals 7, 43 (1983).CrossRefGoogle Scholar
44Sano, M., Nishimura, H., and Ichimura, K., Synth. Metals 30, 73 (1989).CrossRefGoogle Scholar
45Sano, M., Enoki, T., and Inokuchi, H., unpublished research.Google Scholar
46Guérard, D., Elalem, N. E., and Takoudjou, C., Synth. Metals 12, 195 (1985).CrossRefGoogle Scholar
47Lagrange, P. and Hérold, A., Carbon 16, 235 (1978).CrossRefGoogle Scholar
48Trewern, T., Thomas, R. K., Naylor, G., and White, J.W., J. Chem. Soc. Faraday Trans. 1, 78, 2369 (1982).Google Scholar
49Beaufils, J.P., Trewern, T., Thomas, R. K., and White, J.W., J. Chem. Soc. Faraday Trans. 1, 78, 2387 (1982).Google Scholar
50Trewern, T., Thomas, R. K., and White, J.W., J. Chem. Soc. Faraday Trans. 1, 78, 2399 (1982).Google Scholar
51Kamitakahara, W. K., Doll, G. L., and Eklund, P. C., Extended Abstracts, Fall Meeting of The Materials Research Society, Boston, MA, 69 (1986).Google Scholar
52Salamanca-Riba, L., Yeh, N-C., Dresselhaus, M. S., Endo, M., and Enoki, T., J. Mater. Res. 1, 177 (1986).CrossRefGoogle Scholar
53Miyajima, S., Chiba, T., Enoki, T., Inokuchi, H., and Sano, M., Phys. Rev. B37, 3246 (1988).CrossRefGoogle Scholar
54Miyajima, S., Kabasawa, M., Chiba, T., Enoki, T., and Inokuchi, H., Phys. Rev. Lett. (1989) (in press).Google Scholar
55Enoki, T., Sano, M., and Inokuchi, H., Phys. Rev. B32, 2497 (1985).CrossRefGoogle Scholar
56Enoki, T., Sano, M., and Inokuchi, H., Synth. Metals 12, 207 (1985).CrossRefGoogle Scholar
57Enoki, T., Yeh, N-C., Chen, S-T., and Dresselhaus, M.S., Phys. Rev. B33, 1292 (1986).CrossRefGoogle Scholar
58Murakami, H., Sano, M., Kanazawa, I., Enoki, T., Kurihara, T., Sakurai, Y., and Inokuchi, H., J. Chem. Phys. 85, 4728 (1985).CrossRefGoogle Scholar
59Kanazawa, I., Sano, M., Enoki, T., Murakami, H., Sakurai, Y., and Inokuchi, H., Synth. Metals 12, 225 (1985).CrossRefGoogle Scholar
60Yeh, N-C., Sugihara, K., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B38, 12615 (1988).CrossRefGoogle Scholar
61Conard, J., Estrade-Szwarckopf, H., Lauginie, P., Makrini, M. El, Lagrange, P., and Guérard, D., Synth. Metals 2, 261 (1980).CrossRefGoogle Scholar
62Conard, J., Estrade-Szwarckopf, H., Lauginie, P., Makrini, M. El, Lagrange, P., and Guérard, D., Physica 105B, 290 (1981).Google Scholar
63Enoki, T., Inokuchi, H., and Sano, M., Chem. Phys. Lett. 86, 285 (1982).CrossRefGoogle Scholar
64Enoki, T., Sano, M., and Inokuchi, H., J. Chem. Phys. 78, 2017 (1983).CrossRefGoogle Scholar
65Enoki, T., Inokuchi, H., and Sano, M., Phys. Rev. B37, 9163 (1988).CrossRefGoogle Scholar
66Sano, M. and Inokuchi, H., Chem. Lett. 405 (1979).CrossRefGoogle Scholar
67Enoki, T., Imaeda, K., Inokuchi, H., and Sano, M., Phys. Rev. B35, 9399 (1987).CrossRefGoogle Scholar
68Ebert, L. B. and Matty, L., Synth. Metals 4, 345 (1982).CrossRefGoogle Scholar
69Nomura, K., Saito, T., and Kume, K., Solid State Commun. 63, 1059 (1987).CrossRefGoogle Scholar
70Saito, T., Nomura, K., Mizoguchi, K., Mizuno, K., Kume, K., and Suematsu, H., J. Phys. Soc. Jpn. 58, 269 (1989).CrossRefGoogle Scholar
71Doll, G. L., Yang, M. H., and Eklund, P. C., Phys. Rev. B35, 9790 (1987).CrossRefGoogle Scholar
72Mizutani, U., Kondow, T., and Massalski, T. B., Phys. Rev. B23, 3165 (1978).CrossRefGoogle Scholar
73Suganuma, M., Kondow, T., and Mizutani, U., Phys. Rev. B23, 706 (1981).CrossRefGoogle Scholar
74Inoshita, T., Nakao, K., and Kamimura, H., J. Phys. Soc. Jpn. 43, 1237 (1977).CrossRefGoogle Scholar
75Ohno, T., Nakao, K., and Kamimura, H., J. Phys. Soc. Jpn. 49, 1125 (1979).CrossRefGoogle Scholar
76 The electronic structure of C8K presented by Kamimura's group has been revised through controversy about the presence of the alkali metal s-band. The band originating from alkali metal s-electrons shown in Fig. 20 is now considered to be an inter- layer band hybridized with alkali metal s-band existing in interlayer space between the graphite sheets. For details, see H. Kamimura, Ann. de Phys. 11, Suppl. 2, 39 (1986).Google Scholar
77Sugihara, K. (private communication).Google Scholar
78Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
79 The value of f K = 0.6 may be modified, since the electronic structure of C8K has been the subject of debate now, as shown in Ref. 76.Google Scholar
80Dresselhaus, G. and Leung, S.Y., Solid State Commun. 35, 819 (1981).CrossRefGoogle Scholar
81Slonczewski, J. C. and Weiss, P. R., Phys. Rev. 109, 272 (1958).CrossRefGoogle Scholar
82McClure, J.W., Phys. Rev. 104, 666 (1957).CrossRefGoogle Scholar
83McClure, J.W., Phys. Rev. 108, 612 (1960).CrossRefGoogle Scholar
84Timp, G., Chieu, T.C., Dresselhaus, P. D., and Dresselhaus, G., Phys. Rev. B29, 6940 (1984).CrossRefGoogle Scholar
85Tanuma, S., Suematsu, H., Higuchi, K., Inada, R., and Onuki, Y., Proc. of the Conf. on the Application on High Magnetic Fields in Semiconductor Physics, edited by Ryan, J. F. (Clarendon, Oxford, 1978), p. 85.Google Scholar
86Dresselhaus, G., Leung, S.Y., Shayegan, M., and Chieu, T.C., Synth. Metals 2, 321 (1980).CrossRefGoogle Scholar
87Blinowski, J., Hau, N. H., Rigoux, C., Vieren, J. P., LeToullec, R., Furdin, G., Hérold, H., and Melin, J., J. Phys. (Paris) 41, 47 (1980).CrossRefGoogle Scholar
88Takahashi, T., Toukairin, H., and Sagawa, T. (private commu- nication).Google Scholar
89Yamamoto, H., Seki, K., Enoki, T., and Inokuchi, H., Solid State Commun. 69, 425 (1989).CrossRefGoogle Scholar
90Kamimura, H., Nakao, K., Ohno, T., and Inoshita, T., Physica B99, 401 (1980).Google Scholar
91 Similar anomalous anisotropy in resistivity was observed also for other ternary GIC's (alkali-metal-bismuth-graphite), McRae, E. and Mareche, J. F., J. Mater. Res. 3, 75 (1988).CrossRefGoogle Scholar
92Sugihara, K., Phys. Rev. B28, 2157 (1983).CrossRefGoogle Scholar
93Issi, J-P., Boxus, J., Poulaert, B., Mazurek, H., and Dresselhaus, M. S., J. Phys. C14, L307 (1981).Google Scholar
94Elzinga, M., Morelli, D.T., and Uher, C., Phys. Rev. B26, 3312 (1982).CrossRefGoogle Scholar
95Enoki, T., Miyajima, S., Kabasawa, M., Chiba, T., Yamamoto, H., Inokuchi, H., and Seki, K., Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 213 (1988).Google Scholar
96Kazama, S. and Fukai, Y., J. Phys. Soc. Jpn. 42, 119 (1977).CrossRefGoogle Scholar
97 From the experimental results of specific heat, Shubnikov-de Haas oscillations and optical reflectance, potassium is completely ionizedf K = 1 except for the Shubnikov-de Haas experiment on stage-1 KH-GIC. However, c-axis resistivity shows metallic conduction, so that a more detailed discussion requires an incompletely filled cation state of potassium f K < though the deviation f K from unity is quite small. Future study is nec- essary to clarify this point.Google Scholar
98Senbetu, L., Ikezi, H., and Umrigar, C., Phys. Rev. B32, 750 (1985).CrossRefGoogle Scholar
99Holzwarth, N.A.W. and Had, S. D., Phys. Rev. B38, 3722 (1988).CrossRefGoogle Scholar
100Tatar, R.C. and Rabii, S., Phys. Rev. B25, 4126 (1982).CrossRefGoogle Scholar
101Willis, R. F., Feuerbauer, B., and Fitton, B., Phys. Rev. B32, 8317 (1971).Google Scholar
102Takahashi, T., Tokailin, H., and Sagawa, T., Phys. Rev. B32, 8317 (1985).CrossRefGoogle Scholar
103CRC Handbook of Chemistry and Physics, edited by Weast, R. C. (CRC Press Inc., Cranwood Parkway, Cleveland, OH, 1977).Google Scholar
104Karplus, M. and Porter, R. N., Atoms and Molecules (W. A. Benjamin Inc., New York, 1970).Google Scholar
105Goddard, W. A., Phys. Rev. 172, 7 (1968).CrossRefGoogle Scholar
106Norskov, J. K., Phys. Rev. B20, 446 (1979).CrossRefGoogle Scholar
107Nieminen, R. M., Hyperfine Intercations 8, 437 (1981).CrossRefGoogle Scholar
108Guérard, D., Lagrange, P., Hérold, A., and Rousseaux, F., Synth. Metals 23, 421 (1988).CrossRefGoogle Scholar
109Mizuno, S. and Nakao, K., Phys. Rev. B (1989) (in press).Google Scholar
110Enoki, T., Sano, M., and Inokuchi, H., Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 243 (1984).Google Scholar
111Funahashi, S., Kondow, T., and Izumi, M., Solid State Commun. 44, 1515 (1982).CrossRefGoogle Scholar
112Horie, C., Maeda, M., and Kuramoto, Y., Physica (Utrecht) 99B, 430 (1980).Google Scholar
113Enoki, T., Jeszka, J. K., Inokuchi, H., and Sano, M. (to be published).Google Scholar
114Alexander, M. G., Goshorn, D. P., Guerard, D., Lagrange, P., Makrini, M. El, and Onn, G., Solid State Commun. 38, 103 (1981).CrossRefGoogle Scholar
115Kim, H. J., Mertwoy, H., and Axe, J. D., Phys. Rev. B29, 5947 (1974).Google Scholar
116Zabel, H. and Magerl, A., Phys. Rev. B25, 2463 (1982).CrossRefGoogle Scholar
117Koike, Y., Suematsu, H., Higuchi, K., and Tanuma, S., Solid State Commun. 27, 623 (1978).CrossRefGoogle Scholar
118Kobayashi, M. and Tsujikawa, I., J. Phys. Soc. Jpn. 50, 3245 (1981).CrossRefGoogle Scholar
119Kobayashi, M., Enoki, T., Inokuchi, H., Sano, M., Sumiyama, A., Oda, Y., and Nagano, H., J. Phys. Soc. Jpn. 54, 2359 (1985).CrossRefGoogle Scholar
120Sano, M., Inokuchi, H., Kobayashi, M., Kaneiwa, S., and Tsujikawa, I., J. Chem. Phys. 72, 3840 (1980).CrossRefGoogle Scholar
121Kaneiwa, S., Kobayashi, M., and Tsujikawa, I., J. Phys. Soc. Jpn. 51, 2375 (1982).CrossRefGoogle Scholar
122Suzuki, K., Tsujikawa, I., Kobayashi, M., Inokuchi, H., Oda, Y., Sumiyama, A., Nagano, H., and Kimishima, Y., Synth. Metals 12, 389 (1985).CrossRefGoogle Scholar
123McMillan, W.L., Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
124Takada, Y., J. Phys. Soc. Jpn. 51, 63 (1982).CrossRefGoogle Scholar
125Al-Jishi, R., Phys. Rev. B28, 112 (1983).CrossRefGoogle Scholar
126Overhauser, A.W., Phys. Rev. B35, 411 (1987).CrossRefGoogle Scholar
127Gupta, M. and Percheron-Guégan, A., Chemica Scripta 28, 117 (1988).Google Scholar