Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:03:04.111Z Has data issue: false hasContentIssue false

High-refractive-index tin sulfide core–shell spheres for photonic applications

Published online by Cambridge University Press:  20 March 2012

Xiaotao Peng
Affiliation:
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003
Anthony D. Dinsmore*
Affiliation:
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003
*
b)Address all correspondence to this author. e-mail: dinsmore@physics.umass.edu
Get access

Abstract

We describe the fabrication of core–shell colloidal spheres composed of a shell of tin sulfide and a core of polystyrene. The tin sulfide shell is deposited on micrometer-sized latex spheres using a sonochemical technique. By angle-dependent light scattering and electron microscopy, we find that the refractive index of the shell is 3.0 at a wave length of 1064 nm, and the shell’s thickness is controllable in the range of 30–60 nm. The resulting spheres have a narrow distribution of sizes, are stable in aqueous suspension, and are very strong scatterers in the near infrared with potential application in photonic band gap materials or other photonic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).CrossRefGoogle ScholarPubMed
2.Yablonovitch, E.: Inhibited emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 20592062 (1987).CrossRefGoogle ScholarPubMed
3.Johnson, S.G. and Joannopoulos, J.D.: Photonic Crystals: The Road from Theory to Practice (Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 2002).Google Scholar
4.Lopez, C.: Materials aspects of photonic crystals. Adv. Mater. 15, 1679 (2003).CrossRefGoogle Scholar
5.Busch, K., Lolkes, S., Wehrspohn, R.B., and Foll, H.: Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, Weinheim, Germany, 2004).CrossRefGoogle Scholar
6.Ding, T., Liu, Z.F., and Song, K.: Preparation of 3D photonic crystals. Prog. Chem. 20, 1283 (2008).Google Scholar
7.Braun, P.V., Rinne, S.A., and Garcia-Santamaria, F.: Introducing defects in 3D photonic crystals: State of the art. Adv. Mater. 18, 2665 (2006).CrossRefGoogle Scholar
8.von Freymann, G., Ledermann, A., Thiel, M., Staude, I., Essig, S., Busch, K., and Wegener, M.: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038 (2010).CrossRefGoogle Scholar
9.Ho, K.M., Chan, C.T., and Soukoulis, C.M.: Existence of a photonic band gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990).CrossRefGoogle Scholar
10.Biswas, R., Sigalas, M.M., Subramania, G., and Ho, K.M.: Photonic band gaps in colloidal systems. Phys. Rev. B 57, 3701 (1998).CrossRefGoogle Scholar
11.Busch, K. and John, S.: Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896 (1998).CrossRefGoogle Scholar
12.Imhof, A. and Pine, D.J.: Ordered macroporous materials by emulsion templating. Nature 389, 951 (1997).CrossRefGoogle Scholar
13.Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., and Ralchenko, V.G.: Carbon structure with three-dimensional periodicity at optical wavelengths. Science 282, 897 (1998).CrossRefGoogle ScholarPubMed
14.Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., and van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437 (2000).CrossRefGoogle ScholarPubMed
15.Muller, M., Zentel, R., Maka, T., Romanov, S.G., and Torres, C.M.: Photonic crystal films with high refractive index contrast. Adv. Mater. 12, 1499 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
16.Zhang, Z-Q. and Sheng, P.: Wave diffusion and localization in random composites, in Scattering and Localization of Classical Waves in Random Media, edited by Sheng, P. (World Scientific, Singapore, 1990).Google Scholar
17.Busch, K. and Soukoulis, C.M.: Transport properties of random media: A new effective medium theory. Phys. Rev. Lett. 75, 3442 (1995).CrossRefGoogle Scholar
18.Busch, K. and Soukoulis, C.M.: Energy-density CPA: A new effective medium theory for classical waves. Physica B 296, 56 (2001).CrossRefGoogle Scholar
19.Velikov, K.P. and van Blaaderen, A.: Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica. Langmuir 17, 4779 (2001).CrossRefGoogle Scholar
20.Breen, M.L., Dinsmore, A.D., Pink, R.H., Qadri, S.B., and Ratna, B.R.: Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir 17, 903 (2001).CrossRefGoogle Scholar
21.Yin, J.L., Qian, X.F., Yin, J., Shi, M.W., and Zhou, G.T.: Preparation of ZnS/PS microspheres and ZnS hollow shells. Mater. Lett. 57, 3859 (2003).CrossRefGoogle Scholar
22.Pich, A., Hain, J., Prots, Y., and Adler, H.J.: Composite polymeric particles with ZnS shells. Polymer 46, 7931 (2005).CrossRefGoogle Scholar
23.Ji, T.H., Liu, G.R., Qi, X.Y., Xu, H.B., and Gao, M.Y.: Solid-CdS and hollow-ZnS porous submicro spheres: Direct preparation by C-S decomposition of thiol via solvothermal processing. Mater. Res. Bull. 42, 720 (2007).CrossRefGoogle Scholar
24.Huang, K.J., Rajendran, P., and Liddell, C.M.: Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene. J. Colloid Interface Sci. 308, 112 (2007).CrossRefGoogle ScholarPubMed
25.Son, D., Wolosiuk, A., and Braun, P.V.: Double direct templated hollow ZnS microspheres formed on chemically modified silica colloids. Chem. Mater. 21, 628 (2009).CrossRefGoogle Scholar
26.Sossng, C.X., Yang, M.L., Wang, D.B., and Hu, Z.S.: Synthesis and optical properties of ZnS hollow spheres from single source precursor. Mater. Res. Bull. 45, 1021 (2010).CrossRefGoogle Scholar
27.Peng, Q., Dong, Y.J., and Li, Y.D.: ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 42, 3027 (2003).CrossRefGoogle ScholarPubMed
28.Agrawal, M., Gupta, S., and Stamm, M.: Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem. 21, 615 (2011).CrossRefGoogle Scholar
29.Agrawal, M., Pich, A., Zafeiropoulos, N.E., and Stamm, M.: Fabrication of hollow titania microspheres with tailored shell thickness. Colloid Polym. Sci. 286, 593 (2008).CrossRefGoogle Scholar
30.Suh, W.H., Jang, A.R., Suh, Y.H., and Suslick, K.S.: Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater. 18, 1832 (2006).CrossRefGoogle Scholar
31.Domingo, G., Itoga, R.S., and Kannewur, C.R.: Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev. 143, 536 (1966).CrossRefGoogle Scholar
32.Mandalidis, S., Kalomiros, J.A., Kambas, K., and Anagnostopoulos, A.N.: Optical investigation of SnS2 single crystals. J. Mater. Sci. 31, 5975 (1996).CrossRefGoogle Scholar
33.Deopura, M., Ullal, C.K., Temelkuran, B., and Fink, Y.: Dielectric omnidirectional visible reflector. Opt. Lett. 26, 1197 (2001).CrossRefGoogle ScholarPubMed
34.Lambros, A.P., Geraleas, D., and Economou, N.A.: Optical-absorption edge in SnS. J. Phys. Chem. Solids 35, 537 (1974).CrossRefGoogle Scholar
35.Bang, J.H. and Suslick, K.S.: Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039 (2010).CrossRefGoogle Scholar
36.Lumsdon, S.O., Kaler, E.W., and Velev, O.D.: Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20, 2108 (2004).CrossRefGoogle ScholarPubMed
37.Dimitrov, A.S. and Nagayama, K.: Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays. Chem. Phys. Lett. 243, 462 (1995).CrossRefGoogle Scholar
38.Cullity, J.: Elements of X-Ray Diffraction (Addison-Wesley, Boston, MA, 1978).Google Scholar
39.Chen, D., Shen, G.Z., Tang, K.B., Lei, S.J., Zheng, H.G., and Qian, Y.T.: Microwave-assisted polyol synthesis of nanoscale SnSx(x = 1,2) flakes. J. Cryst. Growth 260, 469 (2004).CrossRefGoogle Scholar
40.Sanchez-Juarez, A., Tiburcio-Silver, A., and Ortiz, A.: Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films 480, 452 (2005).CrossRefGoogle Scholar
41.Greyson, E.C., Barton, J.E., and Odom, T.W.: Tetrahedral zinc blende tin sulfide nano- and microcrystals. Small 2, 368 (2006).CrossRefGoogle ScholarPubMed
42.Gao, C., Shen, H.L., Sun, L., and Shen, Z.: Chemical bath deposition of SnS films with different crystal structures. Mater. Lett. 65, 1413 (2011).CrossRefGoogle Scholar
43.Nelder, J.A. and Mead, R.: A simplex-method for function minimization. Comput. J. 7, 308 (1965).CrossRefGoogle Scholar
44.Bohren, C.F. and Huffman, D.R.: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
45.Ma, X.Y., Lu, J.Q., Brock, R.S., Jacobs, K.M., Yang, P., and Hu, X.H.: Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys. Med. Biol. 48, 4165 (2003).CrossRefGoogle ScholarPubMed