Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:05:46.083Z Has data issue: false hasContentIssue false

High temperature ultrasonic characterization of intrinsic and microstructural changes in ceramic YBa2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

S. Suasmoro
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, URA CNRS 320, 47 à 73, Avenue Albert Thomas, 87065 Limoges, France
D.S. Smith*
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, URA CNRS 320, 47 à 73, Avenue Albert Thomas, 87065 Limoges, France
M. Lejeune
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, URA CNRS 320, 47 à 73, Avenue Albert Thomas, 87065 Limoges, France
M. Huger
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, URA CNRS 320, 47 à 73, Avenue Albert Thomas, 87065 Limoges, France
C. Gault
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, URA CNRS 320, 47 à 73, Avenue Albert Thomas, 87065 Limoges, France
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Young's modulus of ceramic YBa2Cu3O7−δ was measured between room temperature and 1000 °C, E(T), by an ultrasonic pulse-echo technique. Experimental results are presented for nonaligned ceramics with average grain sizes from 2 to 10 μm and densities from 80% to 95% of the theoretical value. Young's modulus is shown to be strongly sensitive to oxygen content with the orthorhombic phase being significantly stiffer than the tetragonal phase. In addition, the phase transition is denoted by a pronounced minimum in E(T) relating to softening of certain bonds in the unit cell. At high temperature (>900 °C) melting of the second phase gives a steep drop in E(T) while subsequent densification increases E. Finally, cooling of large-grained ceramic below 450 °C opens microcracks due to anisotropic volume changes. This results in hysteresis between the heating and cooling curves for E(T). Hence the technique is used to show that ceramic, with an average grain size of 2 μm and 85% of theoretical density, is well oxygenated and undamaged by its thermal treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O'Bryan, H. M. and Gallagher, P. K., Ceramic Superconductors II, edited by Yan, M. F. (The American Ceramic Society, Westerville, OH, 1988), pp. 8998.Google Scholar
2.Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248256 (1989).CrossRefGoogle Scholar
3.Loehman, R. E., Hammetter, W. F., Venturini, E. L., Moore, R. H., and Gerstle, F. P. Jr, J. Am. Ceram. Soc. 72, 669674 (1989).CrossRefGoogle Scholar
4.Goodman, P., Grigg, M., Opat, G., Peele, A., Drennan, J., and Rohan, P., J. Am. Ceram. Soc. 72, 856859 (1989).CrossRefGoogle Scholar
5.Smith, D. S., Suasmoro, S., and Gault, C., J. Eur. Ceram. Soc. 5, 8185 (1989).CrossRefGoogle Scholar
6.Holcomb, D. J. and Mayo, M. J., J. Mater. Res. 5, 18271833 (1990).CrossRefGoogle Scholar
7.Ledbetter, H. and Lei, M., J. Mater. Res. 5, 241244 (1990).CrossRefGoogle Scholar
8.Phani, K. K. and Niyogi, S. K., J. Mater. Sci. 22, 257263 (1987).CrossRefGoogle Scholar
9.Ledbetter, H. M., Austin, M. W., Kim, S. A., and Lei, M., J. Mater. Res. 2, 786789 (1987).CrossRefGoogle Scholar
10.Lemmens, P., Hunnekes, C., Brakmann, M., Ewert, S., Comberg, A., and Passing, H., Physica C 162164, 452 (1989).Google Scholar
11.Smith, D. S., Suasmoro, S., Huger, M., and Gault, C., High Temperature Superconductors—Materials Aspects, edited by Freyhardt, H. C., Flukiger, R., and Peukert, M. 1991), pp. 835840.Google Scholar
12.Richardson, T. J. and De Jonghe, L. C., J. Mater. Res. 5, 20662074 (1990).CrossRefGoogle Scholar
13.Gault, C., in Nondestructive Monitoring of Materials Properties, edited by Holbrook, J. and Bussiere, J. (Mater. Res. Soc. Symp. Proc. 142, Pittsburgh, PA, 1989), pp. 263274.Google Scholar
14.Kittel, C., Introduction to Solid State Physics, 5th ed. (John Wiley, New York, 1976).Google Scholar
15.Nakazawa, Y. and Ishikawa, M., Physica C 158, 381 (1989).CrossRefGoogle Scholar
16.Junod, A., private communication.Google Scholar
17.Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. L., Jr., Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram.Soc. 72, 17751788 (1989).CrossRefGoogle Scholar
18.Gallagher, P. K., Adv. Ceram. Mater. 2 (3B), 632639 (1987).CrossRefGoogle Scholar
19.O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mater. 2 (3B), 640648 (1987).CrossRefGoogle Scholar
20.Wong-Ng, W., Cook, L. P., Chiang, C. K., Swartzendruber, L. J., Bennett, L. H., Blendell, J., and Minor, D., J. Mater. Res. 3, 832839 (1988).CrossRefGoogle Scholar
21.Lecomte, J. and Benkaddour, N., Proceedings of Journées d'Etudes a l'ISMRA, 13 and 14 September 1988, Caen, France, pp. 6669, available through the Société des Electriciens et des Electroniciens, Paris.Google Scholar
22.Hewat, A. W., Capponi, J. J., Chaillout, C., Marezio, M., and Hewat, E. A., Solid State Commun. 64, 301307 (1987).CrossRefGoogle Scholar
23.Mader, G., Meixner, H., and Kleinschmidt, P., J. Appl. Phys. 58, 702704 (1985).CrossRefGoogle Scholar
24.Ting, W., Laegried, T., Fossheim, K., Axe, J. D., and Hildaka, Y., Physica C 162164, 448 (1989).Google Scholar
25.Aselage, T. and Keefer, K., J. Mater. Res. 3, 12791291 (1988).CrossRefGoogle Scholar
26.Alford, N. Mc N., Birchall, J. D., Clegg, W. J., Harmer, M. A., Kendall, K., and Jones, D. H., J. Mater. Sci. 23, 761768 (1988).CrossRefGoogle Scholar
27.Lay, K. W. and Renlund, G. M., J. Am. Ceram. Soc. 73,12081213 (1990).CrossRefGoogle Scholar
28.Rodriguez, J., Bassas, J., Obradors, X., Valler, M., Calbert, J., Anne, M., and Pannetier, J., Physica C 153155, 1671 (1988).Google Scholar
29.Case, E. D., Smyth, J. R., and Hunter, O., Jr., Mater. Sci. Eng. 51, 175179 (1981).CrossRefGoogle Scholar