Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:48:17.285Z Has data issue: false hasContentIssue false

High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system

Published online by Cambridge University Press:  01 January 2006

W. Zhang*
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: wzhang@imr.tohoku.ac.jp
Get access

Abstract

The addition of Ag to Cu–Zr alloys is very effective for the increase in the stability of supercooled liquid as well as the glass-forming ability (GFA). The large supercooled liquid region (ΔTx) exceeding 60 K in Cu–Zr–Ag ternary system was obtained in a wide range of 25–55 at.% Cu, 40–65 at.% Zr, and 5–25 at.% Ag. The best GFA was obtained around Cu45Zr45Ag10, and glassy alloy rods with diameters up to 6.0 mm were formed by copper mold casting. The bulk glassy alloys exhibit good mechanical properties, i.e., compressive fracture strength of 1780–1940 MPa, Young's modulus of 106–112 GPa, compressive plastic elongation of 0.2–2.9%, and Vickers hardness of 534–599. The finding of the new Cu–Zr–Ag ternary glassy alloy system with high GFA and good mechanical properties is important for development and scientific studies of bulk glassy alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Ohtera, K., Kita, K. and Masumoto, T.: New amorphous Mg–Ce–Ni alloys with high strength and good ductility. Jpn. J. Appl. Phys. 27, L2248 (1988).Google Scholar
2.Inoue, A., Zhang, T. and Masumoto, T.: Al–La–Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 30, 965 (1989).CrossRefGoogle Scholar
3.Inoue, A., Zhang, T. and Masumoto, T.: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31, 177 (1990).CrossRefGoogle Scholar
4.Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
5.Inoue, A. and Gook, S.G.: Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans. JIM 36, 1180 (1995).CrossRefGoogle Scholar
6.Inoue, A., Zhang, T. and Takeuchi, A.: Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM = IV–VIII group transition metal) system. Appl. Phys. Lett. 71, 464 (1997).CrossRefGoogle Scholar
7.Inoue, A. and Shen, B.: Soft magnetic bulk glassy Fe–B–Si–Nb alloys with high saturation magnetization above 1.5 T. Mater. Trans. 43, 766 (2002).CrossRefGoogle Scholar
8.Lu, Z.P., Liu, C.T. and Porter, W.D.: Structural amorphous steels. Phys. Rew. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
9.Itoi, T. and Inoue, A.: Thermal stability and soft magnetic properties of Co–Fe–M–B (M = Nb, Zr) amorphous alloys with large supercooled liquid region. Mater. Trans. JIM 41, 1256 (2000).CrossRefGoogle Scholar
10.Koshiba, H. and Inoue, A.: Preparation and magnetic properties of Co-based bulk glassy alloys. Mater. Trans. 42, 2572 (2001).CrossRefGoogle Scholar
11.Wang, X., Yoshii, I., Inoue, A., Kim, Y.H. and Kim, I.B.: Bulk amorphous Ni75−xNb5MxP20−yBy (M = Cr, Mo) alloys with large supercooling and high strength. Mater. Trans. JIM 40, 1130 (1999).CrossRefGoogle Scholar
12.Yi, S., Park, T.G. and Kim, D.H.: Ni-based bulk amorphous alloys in the Ni–Ti–Zr–(Si, Sn) system. J. Mater. Res. 15, 2425 (2000).CrossRefGoogle Scholar
13.Zhang, T. and Inoue, A.: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 (2002).CrossRefGoogle Scholar
14.Yim, H.C., Xu, D. and Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B,Fe,Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).Google Scholar
15.Zhang, W. and Inoue, A.: Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys. Scripta Mater. 48, 641 (2003).CrossRefGoogle Scholar
16.Xu, D., Duan, G. and Johnson, W.L.: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).CrossRefGoogle Scholar
17.Lin, X.H. and Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
18.Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 3645 (2001).CrossRefGoogle Scholar
19.Inoue, A. and Zhang, W.: Formation, Thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002).CrossRefGoogle Scholar
20.Inoue, A. and Zhang, W.: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 (2003).CrossRefGoogle Scholar
21.Inoue, A., Zhang, T. and Masumoto, T.: Preparation of bulky amorphous Zr–Al–Co–Ni–Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM 36, 391 (1995).CrossRefGoogle Scholar
22.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
23.Zhang, T. and Inoue, A.: Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM 39, 1001 (1998).CrossRefGoogle Scholar
24.Inoue, A., Zhang, T., Kurosaka, K. and Zhang, W.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti–Be system. Mater. Trans. 42, 1800 (2001).CrossRefGoogle Scholar
25.Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Cu-based bulk glassy alloys with good mechanical properties in Cu–Zr–Hf–Ti system. Mater. Trans. 42, 1805 (2001).CrossRefGoogle Scholar
26.Zhang, T., Kurosaka, K. and Inoue, A.: Thermal and mechanical properties of Cu-based Cu–Zr–Ti–Y bulk glassy alloys. Mater. Trans. 42, 2042 (2001).CrossRefGoogle Scholar
27.Zhang, T., Yamamoto, T. and Inoue, A.: Formation, thermal stability and mechanical properties of (Cu0.6Zr0.3Ti0.1)100−xMx (M=Fe, Co, Ni) bulk glassy alloys. Mater. Trans. 43, 3222 (2002).CrossRefGoogle Scholar
28.Shin, Y.S., Kim, J.H., Li, D.M., Li, J.K., Kim, H.J., Jeong, H.G. and Bae, J.C.: New Cu-based bulk metallic glasses with high strength of 2000 MPa. Mater. Sci. Forum 449–452, 945 (2004).CrossRefGoogle Scholar
29.Louzguine, D.V. and Inoue, A.: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scripta Mater. 48, 1325 (2003).CrossRefGoogle Scholar
30.Qin, C., Asami, K., Zhang, T., Zhang, W. and Inoue, A.: Corrosion behavior of Cu–Zr–Ti-Nb bulk glassy alloys. Mater. Trans. 44, 749 (2003).CrossRefGoogle Scholar
31.Kim, Y.C., Kim, D.H. and Lee, J.C.: Formation of ductile Cu-based bulk metallic glass matrix composite by Ta addition. Mater. Trans. 44, 2224 (2003).CrossRefGoogle Scholar
32.Men, H., Kim, W.T. and Kim, D.H.: Effect of titanium on glass-forming ability of Cu–Zr–Al alloys. Mater. Trans. 44, 1647 (2003).CrossRefGoogle Scholar
33.Qin, C., Zhang, W., Kimura, H., Asami, K. and Inoue, A.: New Cu–Zr–Al–Nb bulk glassy alloys with high corrosion resistance. Mater. Trans. 45, 1958 (2004).CrossRefGoogle Scholar
34.Zhang, W. and Inoue, A.: Thermal stability and mechanical properties of Cu-based bulk glassy alloys in Cu50(Zr1−xHfx)45Al5 system. Mater. Trans. 44, 2220 (2003).CrossRefGoogle Scholar
35.Xu, D.H., Duan, G. and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
36.Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
37.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
38.Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
39.Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L. and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x= 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
40.Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K. and Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
41.Tang, B.M., Zhao, D.Q., Pan, M.X. and Wang, W.H.: Binary Cu–Zr bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).Google Scholar
42.Zhang, T., Inoue, A., and Masumoto, T.: (unpublished) .Google Scholar
43.Metals Databook, edited by Japan Inst. Metals (Maruzen, Tokyo, Japan, 1983), p. 8.Google Scholar
44.Niessen, F.R.: Cohesion in Metals (Elsevier Science Publishers, Amsterdam, The Netherlands, 1988), p. 224.Google Scholar
45.Massalski, T.B.: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 29.Google Scholar
46.Chen, H.S.: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).CrossRefGoogle Scholar