Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T19:46:38.811Z Has data issue: false hasContentIssue false

Half-metallic ferromagnetism in hypothetical wurtzite structure chromium chalcogenides

Published online by Cambridge University Press:  03 March 2011

Ming Zhang*
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China; and Van der Waals-Zeeman Instituut,Universiteit van Amsterdam, 1018XE Amsterdam, The Netherlands
Ekkes Brück
Affiliation:
Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018XE Amsterdam, The Netherlands
Frank R. de Boer
Affiliation:
Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018XE Amsterdam, The Netherlands
Guodong Liu
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China
Haining Hu
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China
Zhuhong Liu
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China
Yuting Cui
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China
Guangheng Wu
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences,Beijing 100080, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: zm_info@yahoo.com.cn
Get access

Abstract

The hypothetical wurtzite structure chromium chalcogenides were investigated through first-principle calculation within density-functional theory. All compounds are predicted to be true half-metallic ferromagnets with an integer Bohr magneton of 4 μB per unit. Their half-metallic gaps are 1.147, 0.885, and 0.247 eV at their equilibrium volumes for wurtzite-type CrM (M = S, Se, and Te), respectively. The half-metallicity can be maintained even when volumes are expanded by more than 20% for all compounds and compressed by more than 20%, 20%, and 5%, for CrS, CrSe, and CrTe, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Prinz, G.A.: Magnetoelectronics. Science 282 1660 (1998).CrossRefGoogle ScholarPubMed
2.Ball, P.: Meet the spin doctors. Nature 404 918 (2000).CrossRefGoogle ScholarPubMed
3.Grunberg, P.: Layered magnetic structures: History, highlights, applications. Phys. Today 54 (2001).CrossRefGoogle Scholar
4.Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y. andTreger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294 1488 (2001).CrossRefGoogle ScholarPubMed
5.Pickett, W.E. andMoodera, J.S.: Half metallic magnets. Phys. Today 54 (2001).CrossRefGoogle Scholar
6.de Groot, R.A., Mueller, F.M., von Engen, P.G. andBuschow, K.H.J.: New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50 2024 (1983).CrossRefGoogle Scholar
7.Yanase, A. andSiarori, H.: Band structure in the high temperature phase of Fe3O4. J. Phys. Soc. Jpn. 53 312 (1984).CrossRefGoogle Scholar
8.Kamper, K.P., Schmitt, W., Guntherodt, G., Gambino, R.J. andRuf, R.: CrO2-A new half-metallic ferromagnet? Phys. Rev. Lett. 59 2788 (1987).CrossRefGoogle ScholarPubMed
9.Watts, S.M., Wirth, S., von Molnar, S., Barry, A. andCoey, J.M.D.: Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B 61 9621 (2000).CrossRefGoogle Scholar
10.Park, J.H., Vescovo, E., Kim, H.J., Kwon, C., Ramesh, R. andVenkatesan, T.: Direct evidence for a half-metallic ferromagnet. Nature 392 794 (1998).CrossRefGoogle Scholar
11.Ogawa, T., Shirai, M., Suzuki, N. andKitagawa, I.: First-principles calculations of electronic structures of diluted magnetic semiconductors (Ga,Mn)As. J. Magn. Magn. Mater. 196–197 428 (1999).CrossRefGoogle Scholar
12.Sato, K. andKatayama-Yoshida, H.: Materials design of transparent and half-metallic ferromagnets in V- or Cr-doped ZnS, ZnSe, and ZnTe without P- or N-type doping treatment. Jpn. J. Appl. Phys. 40 L651 (2001).Google Scholar
13.Sanvito, S. and Hill, N.A.: Ground state of half-metallic zinc-blende MnAs. Phys. Rev. B 62 15553 (2000).CrossRefGoogle Scholar
14.Continenza, A., Picozzi, S., Geng, W.T., and Freeman, A.J.: Coordination and chemical effects on the structural, electronic, and magnetic properties in Mn pnictides. Phys. Rev. B 64, 085204 (2001).CrossRefGoogle Scholar
15.Zhao, Y.J., Geng, W.T., Freeman, A.J., and Delley, B.: Structural, electronic, and magnetic properties of α- and β-MnAs: LDA and GGA investigations. Phys. Rev. B 65, 113202 (2002).CrossRefGoogle Scholar
16.Xu, Y.Q., Liu, B.G. andPettifor, D.G.: Half-metallic ferromagnetism of MnBi in the zinc-blende structure. Phys. Rev. B 66 184435 2002;CrossRefGoogle Scholar
17.Liu, G.: Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B 67, 172411 (2003).CrossRefGoogle Scholar
18.Galanakis, I.: Surface half-metallicity of CrAs in the zinc-blende structure. Phys. Rev. B 66 012406 (2002).CrossRefGoogle Scholar
19.Galanakis, I. and Mavropoulos, P.: Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67, 104417 (2003).CrossRefGoogle Scholar
20.Zhang, M., Hu, H.N., Liu, G.D., Cui, Y.T., Liu, Z.H., Wang, J.L., Wu, G.H., Zhang, X.X., Yan, L.Q., Liu, H.Y., Meng, F.B., Qu, J.P. andLi, Y.X.: Half-metallic ferromagnetism in zinc-blende CrBi and the stability of the half-metallicity of zinc-blende CrM (M = P, As, Sb, Bi). J. Phys. Condens. Matter. 15 5017 (2003).CrossRefGoogle Scholar
21.Hohenberg, P. andKohn, W.: Inhomogeneous electron gas. Phys. Rev. 136 B864 (1964).CrossRefGoogle Scholar
22.Blaha, P., Schwarz, K., Sorantin, P., and Tricky, S.B.: Full-potential, linearized augmented plane wave programs for crystalline. Comput. Phys. Commun. 59, 399 (1990).CrossRefGoogle Scholar
23.Blöchl, P., Jepson, O. andAndersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49 16223 (1994).CrossRefGoogle ScholarPubMed
24.Blugel, S., Akai, H., Zeller, R., and Dederichs, P.H.: Hyperfine fields of 3d and 4d impurities in nickel. Phys. Rev. B 35, 3271 (1987).CrossRefGoogle ScholarPubMed
25.Galanakis, I., Dederichs, P.H. andPapanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B. 66 134428 (2002).CrossRefGoogle Scholar
26.Mavropoulos, Ph., Sato, K., Zeller, R., Dederichs, P.H., Popescu, V. andEbert, H.: Effect of the spin-orbit interaction on the band gap of half metals. Phys. Rev. B. 69 054424 (2004).CrossRefGoogle Scholar
27.Xie, W.H. andLiu, B.G.: Half-metallic ferromagnetism in vanadium chalcogenides. J. Phys. Condens. Matter. 15 5085 (2003).CrossRefGoogle Scholar