Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:52:46.460Z Has data issue: false hasContentIssue false

Growth of tetragonal BaTiO3 single crystal fibers

Published online by Cambridge University Press:  31 January 2011

M. Saifi
Affiliation:
Bell Communications Research, Murray Hill, New Jersey 07974
B. Dubois
Affiliation:
Bell Communications Research, Murray Hill, New Jersey 07974
E.M. Vogel
Affiliation:
Bell Communications Research, Murray Hill, New Jersey 07974
F.A. Thiel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

With the increasing use of optical fibers in the telecommunication network, there is need for fiber geometry compatible optical devices such as optical amplifiers, switches, couplers, and isolators. These active devices are based on field-dependent material properties, such as electrooptic and magneto-optic effects, which are stronger in single crystal than in amorphous materials. Single crystal fibers can be grown by the laser heated pedestal growth (LHPG) technique. In this paper we report the growth of single crystal fibers of ferroelectric barium titanate from sintered ceramic rods of stoichiometric barium titanate. Barium titanate is one of the most extensively investigated ferroelectric materials. However, its growth from stoichiometric melt always results in its hexagonal nonferroelectric phase. Using LHPG, single crystal strontium titanate seed, and sintered ceramic barium titanate rods, we have succeeded in growing single crystal fibers (∼ 100 μ m diameter) of pure barium titanate with tetragonal (ferroelectric) crystal structure. This paper discusses growth and characterization of these fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lines, M. E. and Glass, A. M., Principles and Applications of Ferro-electrics and Related Materials (Clarendon, Oxford, 1977), p. 560.Google Scholar
2Lines, M. E. and Glass, A. M., Principles and Applications of Ferro-electrics and Related Materials (Clarendon, Oxford, 1977), pp. 459466.Google Scholar
3Lee, C., Yahia, J., and Brebner, J. L., Phys. Rev. B 3, 2525 (1971).Google Scholar
4Burrus, C. A. and Stone, J., Appl. Phys. Lett. 26, 318 (1975).Google Scholar
5Jona, F. and Shirane, G., Ferroelectric Crystals (Macmillan, New York, 1962), pp. 108203.Google Scholar
6Remeika, J. P., J. Am. Chem. Soc. 76, 940 (1954).CrossRefGoogle Scholar
7Belruss, V., Kalnajs, J., Linz, A., and Forweiler, R. C., Mat. Res. Bull. 6, 899 (1971).CrossRefGoogle Scholar
8Rose, D. E. and Roy, R., J. Am. Ceram. Soc. 38, 102 (1955).Google Scholar
9Nassau, K. and Broyer, A. M., J. Am. Ceram. Soc. 45, 474 (1962).Google Scholar
10Ueda, S., Mat. Res. Bull. 9, 469 (1974).CrossRefGoogle Scholar
11Brown, F. and Todt, W. H., J. Appl. Phys. 35, 1594 (1964).Google Scholar
12Gasson, D. B. and Cockayne, B., J. Mat. Sci. 5, 100 (1970).Google Scholar
13Haggerty, J. S., Menashi, W. P., and Wenckus, J. F., U.S. Patent Nos. 3,944,640 (1976) and 4,012,213 (1977).Google Scholar
14Saifi, M. A. (unpublished).Google Scholar
15Fejer, M. M., Byer, R. L., Feigelson, R., and Kway, W., SPIE Proc. 320, 50 (1982).Google Scholar
16Fejer, M. M., Nightingale, J. L., Magel, G. A., and Byer, R. L., Rev. Sci. Instrum. 55, 1791 (1984).Google Scholar
17Surek, T. and Corriel, S. R., J. Crystal Growth 37, 253 (1977).CrossRefGoogle Scholar
18Carruthers, J. R. and Grasso, M., J. Crystal Growth 1314, 611 (1972).Google Scholar
19Pfann, W. G. and Hagelbarger, D. W., J. Appl. Phys. 27, 12 (1956).CrossRefGoogle Scholar
20Basmajian, J. A. and DeVries, R. C., J. Am. Ceram. Soc. 40, 373 (1957).CrossRefGoogle Scholar
21Swanson, H. E. and Fuyat, R. K., Natl. Bur. Stand. (U.S). Circ. 539, (3) 45 (1954).Google Scholar
22Prasad, V. C. S. and Subbarao, E. C., Appl. Phys. Lett. 22, 424 (1973).CrossRefGoogle Scholar
23Forsbergh, P. N., Phys. Rev. 76, 1187 (1949).CrossRefGoogle Scholar
24Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic, London, 1971), p. 96.Google Scholar