Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:54:04.431Z Has data issue: false hasContentIssue false

Growth of one-dimensional doped polypyrrole nanofibers on glass substrate

Published online by Cambridge University Press:  26 November 2012

Shubhra Goel*
Affiliation:
Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi-110025, India
*
a)Address all correspondence to this author. e-mail: shubhra.goel79@gmail.com
Get access

Abstract

One-dimensional (1D) nanofibers of polypyrrole (PPY) are fabricated on glass substrates in the presence of different dopants, namely, hydrochloric acid (HCl), ferric chloride (FeCl3·6H2O), p-toluene sulfonic acid, camphor sulfonic acid, and polystyrene sulfonic acid using a simple in situ vapor phase chemical oxidative polymerization method. Preliminary morphological details investigated using light microscopic study reveal 1D configuration for all the doped PPY structures, indicating a fibrous/tubular appearance. Furthermore, scanning electron microscopy confirms preferential growth of these PPY structures as fine fibers arranged in a brush-/comb-like pattern, having an average diameter of 70 nm. Such brush-like growing pattern observed for the PPY nanostructures without the aid of nanoporous membranes and/or sophisticated techniques is not very commonly reported in the literature. The undertaken work suggests applications of nanodimensioned fabricated PPY structures in the practical nanodevices and/or functional glass for sensing, optoelectronic, photocatalysis, and solar energy systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nalwa, H.S.: Handbook of Nanostructured Materials and Nanotechnology (Academic Press, New York, 2002).Google Scholar
Liu, H., Li, Y., and Zhu, D.: Synthesis and properties of π-conjugated organic molecular one-dimensional nanomaterials. Int. J. Nanotechnol. 4, 197 (2007).CrossRefGoogle Scholar
Gupta, A., Goel, S., Mehrotra, R., and Kandpal, H.C.: Fabrication, characterization and chemical modification of anthracene based nanostructures. J. Mater. Res. 22, 2719 (2007).CrossRefGoogle Scholar
Goel, S., Mazumdar, N.A., and Gupta, A.: One-dimensional nanofibers of polyindene: Synthesis and characterization. J. Polym. Res. 17, 639 (2010).CrossRefGoogle Scholar
Liu, H., Li, Y., Xiao, S., Gan, H., Jiu, T., Li, H., Jiang, L., Zhu, D., Yu, D., Xiang, B., and Chen, Y.: Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. J. Am. Chem. Soc. 125, 10794 (2003).CrossRefGoogle ScholarPubMed
Nalwa, H.S.: Polymeric Nanostructures and Their Applications, Vol. 12 (American Scientific Publishers, Los Angeles, CA, 2007).Google Scholar
Kaushik, A., Solanki, P.R., Ansari, A., Ahmad, S., and Malhotra, B.D.: A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20, 055105 (2009).CrossRefGoogle ScholarPubMed
Goel, S., Gupta, A., Singh, K.P., Mehrotra, R., and Kandpal, H.C.: Optical studies of polyaniline nanostructures. Mater. Sci. Eng., A 443, 71 (2007).CrossRefGoogle Scholar
Goel, S., Mazumdar, N.A., and Gupta, A.: Growth of one-dimensional polyindole nanostructures. J. Nanosci. Nanotechnol. 11, 10164 (2011).CrossRefGoogle ScholarPubMed
Maynor, B.W., Filocamo, S.F., Grinstaff, M.W., and Liu, J.: Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc. 124, 522 (2002).CrossRefGoogle ScholarPubMed
Rebollar, E., Gaspard, S., Oujja, M., Villavieja, M.M., Corrales, T., Bosch, P., Georgiou, S., and Castillejo, M.: Pulsed laser deposition of polymers doped with fluorescent molecular sensors. Appl. Phys. A 84, 171(2006).CrossRefGoogle Scholar
, Z., Rua, W., Ji, N., Ren, L., Cong, Q., and Zhao, B.: Fabrication of large-scale nanostructure by Langmuir-Blodgett technique. J. Bionic Eng. 3, 59 (2006).CrossRefGoogle Scholar
Stamm, M. and Sydorenko, A.: Nanostructures in thin films from nanostructured polymeric templates: Self-assembly, in Polymer Surfaces and Interfaces, (Springer Berlin, Heidelberg, 2008); p. 261.Google Scholar
Liu, G.L. and Lee, L.P.: Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 87, 074101 (2005).CrossRefGoogle Scholar
Yong-Jun, C., Jian-Bao, L., and Jin-Hui, D.: Si and SiOx nanostructures formed via thermal evaporation. Chem. Phys. Lett. 344, 450 (2001).Google Scholar
Madou, M.: Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 1997).Google Scholar
Yan, H., Zhang, L., Shen, J., Chen, Z., Shi, G., and Zhang, B.: Synthesis, property and field-emission behavior of amorphous polypyrrole nanowires. Nanotechnology 17, 3446 (2006).CrossRefGoogle ScholarPubMed
Goel, S., Mazumdar, N.A., and Gupta, A.: Synthesis and characterization of polypyrrole nanofibers with different dopants. Polym. Adv. Technol. 21, 205 (2010).CrossRefGoogle Scholar
Goel, S., Gupta, A., Singh, K.P., Mehrotra, R., and Kandpal, H.C.: Structural and optical studies of polypyrrole nanostructures. Int. J. Appl. Chem. 2, 157 (2006).Google Scholar
He, C., Yang, C., and Li, Y.: Chemical synthesis of coral-like nanowires and nanowire networks of conducting polypyrrole. Synth. Met. 139, 539 (2003).CrossRefGoogle Scholar
Akinyeye, R., Michira, I., Sekota, M., Al-Ahmed, A., Baker, P., and Iwuoha, E.: Electrochemical interrogation and sensor applications of nanostructured polypyrroles. Electroanalysis 18, 2441 (2006).CrossRefGoogle Scholar
Jerome, C., Labaye, D.E., and Jerome, R.: Electrochemical formation of polypyrrole nanowires. Synth. Met. 142, 207 (2004).CrossRefGoogle Scholar
Wang, J., Mo, X., Ge, D., Tian, Y., Wang, Z., and Wang, S.: Polypyrrole nanostructures formed by electrochemical method on graphite impregnated with paraffin. Synth. Met. 156, 514 (2006).CrossRefGoogle Scholar
Gupta, A., Goel, S., Singh, K.P., Mehrotra, R., and Kandpal, H.C.: Novel method of fabrication of doped polyaniline nanostructures. Indian J. Chem., Sect A 45, 1831 (2006).Google Scholar
Goel, S., Mazumdar, N.A., and Gupta, A.: Fabrication of polyindene and polyindole nanostructures. Appl. Surf. Sci. 256, 4426 (2010).CrossRefGoogle Scholar
Demoustier-Champagne, S., Duchet, J., and Legras, R.: Chemical and electrochemical synthesis of polypyrrole nanotubules. Synth. Met. 101, 20 (1999).CrossRefGoogle Scholar
Warren, L.F., Walker, J.A., Anderson, D.P., Rhodes, C.G., and Buckley, L.J.: A study of conducting polymer morphology. J. Electrochem. Soc. 136, 2286 (1989).CrossRefGoogle Scholar
Goel, S.: Synthesis of polyindole nanoflakes through direct chemical oxidative route. Adv. Sci. Eng. Med. 4, 438441 (2012).CrossRefGoogle Scholar
Shaw, R.A., Eysel, H.H., Liu, K., and Mantsch, H.H.: Infrared spectroscopic analysis of biomedical specimens using glass substrates. Anal. Biochem. 259, 181 (1998).CrossRefGoogle ScholarPubMed