Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:59:38.076Z Has data issue: false hasContentIssue false

Growth of CuInSe2 crystals in Cu-rich Cu–In–Se thin films

Published online by Cambridge University Press:  31 January 2011

Takahiro Wada
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–02, Japan
Naoki Kohara
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–02, Japan
Takayuki Negami
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–02, Japan
Mikihiko Nishitani
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–02, Japan
Get access

Abstract

A Cu-rich CuInSe2 (CIS) thin film with an atomic ratio of Cu/In = 3.6 was characterized using high-resolution and analytical transmission electron microscopy (TEM). The film was deposited on a Mo coated soda-lime glass substrate by physical vapor deposition. Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES) showed that a secondary impurity phase such as Cu2Se segregated on the CIS surface. The three-dimensional crystallographic relationship between the Cu2Se and CIS was found to be (111)Cu2Se (111)CIS and [011]Cu2Se || [011]CIS where the Cu2Se and CIS had pseudocubic structures with a = 5.8 Å and a = 11.6 Å, respectively. CuPt type CIS could be observed near the interface between the Cu2Se and CIS. A growth model of CIS crystals under Cu and Se excess condition is proposed based on the results of TEM. The characteristics of the CIS growth model in Cu-rich CIS film are summarized as follows: (i) CIS crystals are produced from Cu2Se crystals by a “topotactic reaction,” and (ii) sphalerite and/or CuPt type CIS are produced first after the reaction, and (iii) the metastable sphalerite and/or CuPt type CIS is then transformed to the stable chalcopyrite CIS phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rockett, A. and Birkmire, R. M., J. Appl. Phys. 70, R81 (1991).CrossRefGoogle Scholar
2.Contreras, M. A., Gabor, A. M., Tennant, A. L., Asher, A., Tuttle, J. R., and Noufi, R., Prog. in Photovol. 2, 287 (1994).CrossRefGoogle Scholar
3.Negami, T., Nishitani, M., Kohara, N., Hashimoto, Y., and Wada, T. (Mater. Res. Soc. Symp. Proc. 426, Pittsburgh, PA, 1996) p. 267.CrossRefGoogle Scholar
4.Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., and Hermann, A. H., Appl. Phys. Lett. 65, 198 (1994).CrossRefGoogle Scholar
5.Stolt, L., Hedstrom, J., Kessler, J., Pukh, M., Velthaus, K-O., and Shock, H-W., Appl. Phys. Lett. 612, 597 (1993).CrossRefGoogle Scholar
6.Rockett, A., Abou-Elfotouh, A., Albin, D., Bode, M., Ermer, J., Klenk, R., Lommasson, T., Russell, T. W. F., Tomlinson, R. D., Tuttle, J., Stolt, L., Walter, T., and Peterson, T. M., Thin Solid Films 237, 1 (1994).CrossRefGoogle Scholar
7.Klenk, R., Walter, T., Schock, H-W., and Cahen, D., Adv. Mater. 5 (2), 114 (1993).CrossRefGoogle Scholar
8.Tuttle, J. R., Contreras, M., Bode, M. H., Niles, D., Albin, D. S., Matson, R., Gabor, A. M., Tennant, A., Duda, A., and Noufi, R., J. Appl. Phys. 77, 153 (1995).CrossRefGoogle Scholar
9.Nishitani, M., Negami, T., Terauchi, M., and Hirao, T., Jpn. J. Appl. Phys. 31, 192 (1992).CrossRefGoogle Scholar
10.Wada, T., Negami, T., and Nishitani, M., Appl. Phys. Lett. 64, 333 (1994).CrossRefGoogle Scholar
11.Wada, T., Cryst. Res. Technol. 31, S389 (1996).Google Scholar
12.Tuttle, J. R., Albin, D. S., and Noufi, R., Solar Cells 30, 21 (1991).CrossRefGoogle Scholar
13.Chakrabarti, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 2, 305 (1981).CrossRefGoogle Scholar
14.JCPDS Powder Diffraction File Card No. 29–0575, Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1984.Google Scholar
15.Knight, K. S., Mater. Res. Bull. 27, 161 (1992).CrossRefGoogle Scholar
16.Bode, M. H., J. Appl. Phys. 76, 159 (1994).CrossRefGoogle Scholar
17.Fearheiley, M. L., Solar Cells 16, 91 (1986).CrossRefGoogle Scholar
18.Rau, H. and Rabenau, A., J. Solid State Chem. 1, 515 (1970).CrossRefGoogle Scholar
19.Koneshova, T. I., Babitsyna, A. A., and Kalinnikov, V. I., Inorg. Mater. 18, 1267 (1982).Google Scholar
20.Boehnke, U. C. and Kuhn, G., J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
21.Shiojiri, M., Kaito, C., Saito, Y., Teranishi, K., and Sekimoto, S., J. Cryst. Growth 52, 883 (1981).CrossRefGoogle Scholar
22.Limade-Faria, J., Z. Kristallogr. 119, 176 (1963).CrossRefGoogle Scholar
23.Rossi, R. C. and Fulrath, R. M., J. Am. Ceram. Soc. 50, 56 (1967).Google Scholar
24.Salamon, M. B., Physics of Superionic Conductors—Topics in Current Physics (Springer-Verlag, Berlin, 1979), Vol. 15.CrossRefGoogle Scholar
25.Hellman, O., Tanaka, S., Niki, S., and Fons, P., J. Mater. Res. 11, 1398 (1996).CrossRefGoogle Scholar