Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T03:59:18.934Z Has data issue: false hasContentIssue false

Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions

Published online by Cambridge University Press:  01 May 2006

Shu-Huei Hsieh*
Affiliation:
Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliou, Yulin, Taiwan 604;and Department of Materials Science and Engineering, National Formosa University, Douliou, Yunlin, Taiwan 640
Jao-Jia Horng
Affiliation:
Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan 640
Cheng-Kuo Tsai
Affiliation:
Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan 640
*
a) Address all correspondence to this author. e-mail: shhsieh@sunws.nfu.edu.tw
Get access

Abstract

Carbon nanotubes (CNTs) were grown on micron-sized Al2O3 particles in an atmosphere of methane and hydrogen at 700 °C under the catalysis of Fe–Ni nanoparticles that had been deposited on the surface of Al2O3 particles by an electroless plating technique. The individual and competitive adsorption capacities of Pb2+, Cu2+, and Cd2+ from aqueous solution by CNTs on Al2O3 particles were studied. The results showed that the adsorption behavior of these metal ions by as-grown CNTs on Al2O3 particles is in good agreement with the Langmuir adsorption model. The maximum individual adsorption capacities of Pb2+, Cu2+, and Cd2+ from water by as-grown CNTs on Al2O3 particles are 62.50, 27.03, and 9.30 mg/g, respectively. The CNTs on Al2O3 particles have promising potential applications in removing soluble heavy metals from aqueous solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Di, Z.C., Li, Y.H., Luan, Z.K., Liang, J.: Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorption Sci. Technol. 22, 467 (2004).CrossRefGoogle Scholar
2.Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B.: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787 (2003).CrossRefGoogle Scholar
3.Li, Y.H., Wang, S., Luan, Z., Ding, J., Xu, C., Wu, D.: Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057 (2003).CrossRefGoogle Scholar
4.Li, Y.H., Di, Z.C., Luan, Z.K., Ding, J., Zou, H., Wu, X.Q., Xu, C.L., Wu, D.H.J.: Removal of heavy metals from aqueous solution by carbon nanotubes: Adsorption equilibrium and kinetics. Environ. Sci. 16, 208 (2004).Google ScholarPubMed
5.Da, S., Antonio, J.R., Faria, J.C., Da, E.S. Silva, and Fazzio, A.: Adsorption of gold atoms on carbon nanotubes. (Nanotechnol. Conf. Trade Show Nanotech 3, Computational Publications, Cambridge, MA, 2003), p. 165.Google Scholar
6.Zhao, J., Buldum, A., Han, J., and Lu, J.P.: Gas molecules adsorption on carbon nanotubes, in Nanotubes and Related Materials, edited by Rao, A.M. (Mater. Res. Soc. Symp. Proc. 633, Warrendale, PA, 2001), p. A13.48.Google Scholar
7.Valentitni, L., Amentano, I., Lozzi, L., Santucci, S., Kenny, J.M.: Interaction of methane with carbon nanotube thin films: Role of defects and oxygen adsorption. Mater. Sci. Eng. C 24, 527 (2004).CrossRefGoogle Scholar
8.Li, Y.H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D.: Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull. 38, 469 (2003).CrossRefGoogle Scholar
9.Darkrim, F., Levesque, D.: High adsorptive property of opened carbon nanotubes at 77 K. J. Phys. Chem. B 104, 6773 (2000).CrossRefGoogle Scholar
10.Lee, S.M., Park, K.S., Choi, Y.C., Park, Y.S., Bok, J.M., Bae, D.J., Nahm, K.S., Choi, Y.G., Yu, S.C., Kim, N., Frauenheim, T., Lee, Y.H.: Hydrogen adsorption and storage in carbon nanotubes. Synth. Met. 113, 209 (2000).CrossRefGoogle Scholar
11.Netzer, A., Hughes, D.E.: Adsorption of copper, lead and cobalt by activated carbon. Water Res. 18, 927 (1984).CrossRefGoogle Scholar
12.Karabulut, S., Karabakan, A., Denizli, A., Yurum, Y.: Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology 18, 177 (2000).CrossRefGoogle Scholar
13.Brown, P.A., Gill, S.A., Allen, S.J.: Metals removal from wastewaters using peat. Water Res. 34, 3907 (2000).CrossRefGoogle Scholar
14.Kandah, M. I.: Zinc and cadmium adsorption on low-grade phosphate. Separtation and Purification Technology 35, 61 (2004).CrossRefGoogle Scholar
15.Axtell, N.R., Stemberg, S.P.K., Claussen, K.: Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89, 41 (2003).CrossRefGoogle ScholarPubMed
16.Üçer, A., Uyanik, A., Aygün, Ş.F.: Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilized activated carbon. Sep. Purif. Technol. 47, 113 (2006).CrossRefGoogle Scholar
17.Miretzky, P., Saralegui, A., Cirelli, A.F.: Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62, 247 (2006).CrossRefGoogle ScholarPubMed
18.Bereket, G., Aroğuz, A.Z., Özel, M.Z.: Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from aqueous solutions by adsorption on bentonite. J. Colloid Sci. 187, 338 (1997).CrossRefGoogle Scholar
19.Shao, J., Yang, Y., Shi, C.: Preparation and adsorption properties for metal ions of chitin modified by L-cysteine. J. Appl. Polym. Sci. 88, 2575 (2003).CrossRefGoogle Scholar
20.Rivas, B.L., Maturana, H.A., Villegas, S.: Adsorption behavior of metal ions by amidoxime chelating resin. J. Appl. Polym. Sci. 77, 1994 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
21.Lo, S.L., Lin, C.Y.: Adsoption of heavy metals from wastewater with waste activated sludge. Zhongguo Gongchen Xuekan 12, 451 (1989).Google Scholar
22.Jouad, E. M., Jourjon, F., Le Guillanton, G., Elothmani, D.: Removal of metal ions in aqueous solutions by organic polymers: Use of a polydiphenylamine resin. Desalination 180(1–3), 471 (2005).CrossRefGoogle Scholar
23.Reddad, Z., Gerente, C., Andres, Y., Le Cloirec, P.: Comparison of the fixation of several metal ions onto a low-cost biopolymer. Water Sci. Technol. 2(5–6), 217 (2002).Google Scholar
24.Tsai, C-K. A study of adsorption of dissolved heavy metal ions by composite carbon nanotubes. Master Thesis, National Yulin University of Science and Technology, Douliu, Yunlin, Taiwan (2005).Google Scholar
25.Arnold, W.A., Roberts, A.L.: Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environ. Sci. Technol. 32, 3017 (1998).CrossRefGoogle Scholar
26.Fennelly, J.P., Roberts, A.L.: Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ. Sci. Technol. 32, 1980 (1998).CrossRefGoogle Scholar
27.Schrick, B., Blough, J.L., Jones, A.D., Malouk, E.: Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 14, 5140 (2002).CrossRefGoogle Scholar
28.Leah, J.M., Paul, G.T.: Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045 (1994).Google Scholar
29.Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., Campbell, T.J.: Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Tech. 30, 2654 (1996).CrossRefGoogle Scholar
30.Wang, C.B., Zhang, W.X.: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Tech. 31, 2154 (1997).CrossRefGoogle Scholar
31.Melitas, N., Wang, J., Conklin, M., O'Day, P., Farrell, J.: Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol. 36, 2074 (2002).CrossRefGoogle ScholarPubMed
32.Totten, L.A., Jans, U., Roberts, A.L.: Alkyl bromides as mechanistic probes of reductive dehalogenation: Reactions of vicinal dibromide stereoisomers with zerovalent metals. Environ. Sci. Technol. 35, 2268 (2001).CrossRefGoogle ScholarPubMed
33.Su, C., Puls, R.W.: Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 33, 163 (1999).CrossRefGoogle Scholar
34.Casey, F.X.M., Ong, S.K., Horton, R.: Degradation and transformation of trichloroethylene in miscible-displacement experiments through zerovalent metals. Environ. Sci. Technol. 34, 5023 (2000).CrossRefGoogle Scholar
35.Gillham, R.W., O'Hannesin, S.F.: Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, 958 (1994).CrossRefGoogle Scholar
36.Orth, W.S., Gillham, R.W.: Dechlorination of trichloroethylene in aqueous solution using Fe0. Environ. Sci. Technol. 30, 66 (1996).CrossRefGoogle Scholar
37.O'Hannesin, S.F., Gilliham, R.W.: Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water 36(1), 164 (1998).CrossRefGoogle Scholar
38.Meyer, D.E., Wood, K., Bachas, L.G., Bhattacharyya, D.: Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environ. Prog. 23(3), 232 (2004).CrossRefGoogle Scholar
39.Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263 (2002).CrossRefGoogle Scholar
40.Hsu, C.M. Simulating competitive adsorption onto Al2O3 by triple-layer model. Master Thesis, Yulin University of Science and Technology, Douliu, Yunlin, Taiwan (2003).Google Scholar
41.Chiron, N., Guilet, R., Deydier, E.: Adsorption of Cu(II) and Pb(II) onto a grafted silica:isotherms and kinetic models. Water Res. 37, 3079 (2003).CrossRefGoogle ScholarPubMed
42.An, H.K., Park, B.Y., Kim, D.S.: Crab shell for the removal of heavy metals from aqueous solution. Water Res. 15, 3551 (2001).CrossRefGoogle Scholar
43.Taty-Costodes, V.C., Fauduet, H., Porte, C., Delacroix, A.: Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. B(105), 121 (2003).CrossRefGoogle Scholar
44.Ayala, J., Blanco, F., Garcia, P., Rodriguez, P., Sancho, J.: Asturian fly ash as a heavy metals removal material. Fuel 77, 1147 (1998).CrossRefGoogle Scholar
45.Weldon, D.N., Blau, W.J., Zandbergen, H.W.: A high resolution electron microscopy investigation of curvature in carbon nanotube. Chem. Phys. Lett. 241, 365 (1995).CrossRefGoogle Scholar
46.Lambin, P.H., Lucas, A.A., Charlier, J.C.: Electron properties of carbon nanotubes containing. J. Phys. Chem. Solids. 58, 1833 (1997).CrossRefGoogle Scholar