Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T16:57:52.151Z Has data issue: false hasContentIssue false

Growth characteristics of BaxSr(1−x)TiO3 thin films produced by micro-arc oxidation

Published online by Cambridge University Press:  07 April 2020

Min Wang*
Affiliation:
College of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China; and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Xi Zuo
Affiliation:
College of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China
Kang Li
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Kang Wang
Affiliation:
College of Mechanical Engineering, DongGuan University of Technology, Dongguan 523808, China
Guoge Zhang
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
*
a)Address all correspondence to this author. e-mail: wangmin@gpnu.edu.cn
Get access

Abstract

BaxSr(1−x)TiO3 (BST) thin films were fabricated on a Ti substrate using micro-arc oxidation (MAO) in an aqueous solution with the addition of 0.6 M Ba(OH)2, 0.4 M Sr(OH)2, and 0.05 M EDTA. The morphology, composition, and electrical properties of BST films prepared under different processing times were characterized, and MAO growth characteristics of BST films were discussed. Results indicate that dielectric and ferroelectric properties of BST films are positively correlated with surface morphology dependent on MAO spark patterns. To obtain a smooth and compact film, the large spark stage should be avoided. During MAO processes, elements from the substrate and electrolyte solution migrate in opposite directions under an electric field, resulting in Ba, Sr, Ti, and O elements exhibiting a gradient distribution between the BST film and the Ti substrate. BST film prepared using MAO is composed of two layers: an outer loose layer and an inner dense layer. In addition, because of the position of discharge breakdown continually changing, the interface between the film and the substrate is uneven. As MAO processing time increases, BST film thickness increases and ferroelectric property improves. When processing time is 15 min, the residual polarization intensity (2Pr) of the BST film is about 4.9 μC/cm2.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Irzaman, , Dahrul, M., Yuliarto, B., Hammam, K.A., and Alatas, H.: Effects of Li and Cu dopants on the crystal structure of Ba0.65Sr0.35TiO3 thin films. Ferroelectrics Lett. 45, 49 (2018).CrossRefGoogle Scholar
Dewi, R.: Formation and characterization of typical films Ba0.2Sr0.8TiO3 using XRD, FESEM, and spectroscopy impedance. J. Phys.: Conf. Ser. 1120, 012009 (2018).Google Scholar
Upadhyay, R.B., Jalaja, K., and Joshi, U.S.: Structural and electrical properties of Ba0.6Sr0.4TiO3 thin film on LNO/Pt bottom electrode. AIP Conf. Proc. 1837, 030001 (2017).CrossRefGoogle Scholar
Liu, C. and Liu, P.: Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd. 584, 114118 (2014).CrossRefGoogle Scholar
Palupil, E.K., Umam, R., Andriana, B.B., Sato, H., Yuliarto, B., Alatas, H., and Irzaman, : Micro-Raman spectroscopy investigation of chlorophyll-doping effects on Ba0.2Sr0.8TiO3 thin film. J. Phys.: Conf. Ser. 1155, 012044 (2019).Google Scholar
Romanofsky, R.R. and Toonen, R.C.: Past, present, and future of ferroelectric and multiferroic thin films for array antennas. Multidimens. Syst. Signal Process. 29, 475487 (2018).CrossRefGoogle Scholar
Singh, P., Rout, P.K., Singh, M., Rakshit, R.K., and Dogra, A.: Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films 643, 6064 (2017).CrossRefGoogle Scholar
Kevin, N., Borderon, C., Renoud, R., Ghalem, A., Crunteanu, A., Huitema, L., Dumas-Bouchiat, F., Marchet, P., Champeaux, C., and Gundel, H.W.: Diffuse phase transition of BST thin films in the microwave domain. Appl. Phys. Lett. 112, 262901 (2018).Google Scholar
Lai, L., Xu, Y., Ren, Y., Gao, H., Wang, X., Zhu, J., He, Y., and Zhu, X.: Low loss and highly tunable (Ba,Sr)(Ti,Mn)O3/(Ba,Sr)TiO3 bilayered films for electrically tunable microwave device applications. J. Mater. Sci.: Mater. Electron. 28, 57185724 (2017).Google Scholar
Palupi, E.K., Alatas, H., and Irzaman, : Analysis of energy gap and the refractive index of barium strontium titanate (Ba0.2Sr0.8TiO3) films doped of chlorophyll from green leafy vegetables. IOP Conf. Ser. Earth Environ. Sci. 209, 012012 (2018).CrossRefGoogle Scholar
Vigneshwaran, B., Kuppusami, P., Panda, A., Singh, A., and Sreemoolanadhan, H.: Microstructure and optical properties of Ba0.6Sr0.4TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express 5, 066420 (2018).CrossRefGoogle Scholar
Bordbari, M., Eshraghi, M.J., Naderi, N., and Zadeh, A.S.A.H.: Investigation of structural and optical properties of oblique angle sputter deposited barium strontium titanate nanostructures. Mater. Res. Express 6, 025009 (2018).CrossRefGoogle Scholar
Rachut, K., Thorsten, J., Bayer, M., and Wolff, J.O., Kmet, B., Benčan, A., and Klein, A.: Off-stoichiometry of magnetron sputtered Ba1−xSrxTiO3 thin films. Phys. Status Solidi B 256, 1900148 (2019).CrossRefGoogle Scholar
Jamaluddin, F.W., Abdul Khalid, M.F., Mamat, M.H., Zoolfakar, A.S., Zulkefle, M.A., Rusop, M., and Awang, Z.: Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system. AIP Conf. Proc. 1963, 020065 (2018).CrossRefGoogle Scholar
Abu Bakar, N., Adnan, J., Osman, R.A.M., Jamal, Z.A.Z., Idris, M.A., and Wan Nik, W.M.F.: Sol gel preparation methods for barium strontium titanate based solar devices. Phys. Status Solidi 2068, 020057 (2019).Google Scholar
Ge, P., Tang, X., Liu, Q., Jiang, Y., Li, W., and Luo, J.: Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci.: Mater. Electron. 29, 10751081 (2018).Google Scholar
Elbasset, A., Sayouri, S., Abdi, F., Lamcharfi, T., and Mrharrab, L.: Effect of Sr addition on piezoelectric properties and the transition temperature of BaTiO3. Glass Phys. Chem. 43, 9197 (2017).CrossRefGoogle Scholar
Pundareekam Goud, J., Alkathy, M.S., Sandeep, K., Ramakanthand, S., and James Raju, K.C.: Influence of laser fluence on structural, optical, and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci.: Mater. Electron. 29, 15973 (2018).Google Scholar
Reinke, M., Kuzminykh, Y., Eltes, F., Abel, S., LaGrange, T., Neels, A., Jean, F., and Hoffmann, P.: Low temperature epitaxial barium titanate thin film growth in high vacuum CVD. Adv. Mater. Interfaces 4, 1700116 (2017).CrossRefGoogle Scholar
Yoshiizumi, K., Tai, T., Nishide, M., Shima, H., Funakubo, H., Nishida, K., and Yamamoto, T.: Growth and evaluation of epitaxial BaTiO3 thin films of less than 100 nm thickness by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys. 54, 035501 (2015).CrossRefGoogle Scholar
Yan, D., Luo, L., Zhang, Y., Peng, Z., Liu, H., Xiao, D., Liu, T., Lai, X., and Zhu, J.: Influence of deposition temperature on microstructure and electrical properties of modified (Ba,Sr)TiO3 ferroelectric thin films. Ceram. Int. 41, S520S525 (2015).CrossRefGoogle Scholar
Xiao, S., Jiang, W., Luo, K., Jin, H.X., and Lin, Z.: Structure and ferroelectric properties of barium titanate films synthesized by sol–gel method. Mater. Chem. Phys. 127, 420425 (2011).CrossRefGoogle Scholar
Shuster, G., Kreinin, O., Lakin, E., Kuzmina, N.P., and Zolotoyabko, E.: MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors. Thin Solid Films 518, 46584661 (2010).CrossRefGoogle Scholar
Tezuka, M. and Iwasaki, M.: Plasma-induced degradation of aniline in aqueous solution. Thin Solid Films 386, 204207 (2001).CrossRefGoogle Scholar
Shin, Y-K., Chae, W-S., Song, Y-W., and Sung, Y-M.: Formation of titania photocatalyst films by microarc oxidation of Ti and Ti–6Al–4V alloys. Electrochem. Commun. 8, 465470 (2006).CrossRefGoogle Scholar
Hong, M-H., Lee, D-H., Kim, K-M., and Lee, Y-K.: Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films 519, 70657070 (2011).CrossRefGoogle Scholar
Gnedenkov, S.V., Gordienko, P.S., Khrisanfova, O.A., Scorobogatova, T.M., and Sinebrukhov, S.L.: Formation of BaTiO3 coatings on titanium by microarc oxidation method. J. Mater. Sci. 37, 22632265 (2002).CrossRefGoogle Scholar
Wu, C. and Lu, F.: Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature. Surf. Coating. Technol. 199, 225230 (2005).CrossRefGoogle Scholar
Peng, J., Han, B., Li, W., Du, J., Guo, P., and Han, D.: Study on the microstructural evolution of BaTiO3 on titanium substrate during MAO. Mater. Lett. 62, 18011804 (2008).CrossRefGoogle Scholar
Huang, W., Li, W., and Han, B.: Study on BaTiO3 films prepared by AC power microarc oxidation. Sci. China, Ser. E: Technol. Sci. 52, 21952199 (2009).CrossRefGoogle Scholar
Guo, H.F., An, M.Z., Huo, H.B., Xu, S., and Wu, L.J.: Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci. 252, 79117916 (2006).CrossRefGoogle Scholar
Zhao, Z., Pan, Q., Yan, J., Ye, J., and Li, Y.: Direct current micro-arc oxidation coatings on Al–Zn–Mg–Mn–Zr extruded alloy with tunable structures and properties templated by discharge stages. Vacuum 50, 155165 (2018).CrossRefGoogle Scholar
Schreckenbach, J., Schlottig, F., Marx, G., Kriven, W.M., Popoola, O.O., Jilavi, M.H., and Brown, S.D.: Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers. J. Mater. Res. 14, 14371443 (1999).CrossRefGoogle Scholar
Yerokhin, A.L., Xie, N., Leyland, A., Matthews, A., and Dowey, S.J.: Plasma electrolysis for surface engineering. Surf. Coating. Technol. 122, 7393 (1999).CrossRefGoogle Scholar
Li, Q., Yang, W., Liu, C., Wang, D., and Liang, J.: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surf. Coating. Technol. 316, 162170 (2017).CrossRefGoogle Scholar
Tang, W., Yan, J., Yang, G., Gan, G., Du, J., Zhang, J., Liu, Y., Shi, Z., and Yi, J.: Effect of electrolytic solution concentrations on surface hydrophilicity of micro-arc oxidation ceramic film based on Ti6Al4V titanium alloy. Rare Met. Mater. Eng. 43, 28832888 (2014).Google Scholar
Chen, Y., Pen, Z., Wang, Q., and Zhu, J.: Crystalline structure, ferroelectric properties, and electrical conduction characteristics of W/Cr Co-doped Bi4Ti3O12 ceramics. J. Alloys Compd. 612, 120125 (2014).10.1016/j.jallcom.2014.05.136CrossRefGoogle Scholar
Sankar Ganesh, R., Sharma, S.K., Abinnas, N., Durgadevi, E., Raji, P., Ponnusamy, S., Muthamizhchelvan, C., Hayakawa, Y., and Kim, D.Y.: Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol–gel method. Mater. Chem. Phys. 192, 274281 (2017).CrossRefGoogle Scholar
Tsai, M.S., Sun, S.C., and Tseng, T.Y.: Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering. J. Appl. Phys. 82, 34823487 (1997).CrossRefGoogle Scholar
Shen, M., Dong, Z., Gan, Z., and Ge, S.: Oxygen-related dielectric relaxation and leakage characteristics of Pt/(Ba,Sr)TiO3/Pt thin-film capacitors. Appl. Phys. Lett. 80, 25382540 (2002).CrossRefGoogle Scholar
Park, C.H. and Chadi, D.J.: Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B 57, 961964 (1998).CrossRefGoogle Scholar
Ezhilvalavan, S. and Tseng, T-Y.: Progress in the developments of (Ba,Sr)TiO3(BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys. 65, 227248 (2000).CrossRefGoogle Scholar
Liao, J.X., Yang, C.R., Tian, Z., Yang, H.G., and Jin, L.: The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D: Appl. Phys. 39, 2473 (2006).CrossRefGoogle Scholar
Es-Souni, M., Zhang, N., Iakovlev, S., Solterbeck, C-H., and Piorra, A.: Thickness and erbium doping effects on the electrical properties of lead zirconate titanate thin films. Thin Solid Films 440, 2634 (2003).CrossRefGoogle Scholar
Shin, J.C., Hwang, C.S., Kim, H.J., and Park, S.O.: Leakage current of sol–gel derived Pb(Zr,Ti)O3 thin films having Pt electrodes. Appl. Phys. Lett. 75, 3411 (1999).CrossRefGoogle Scholar
MinWang, X.Z., Li, W., Cao, G., and Xiang, A.: Enhanced dielectric performance of BaxSr(1−x)TiO3 films prepared by the direct current micro-arc oxidation in the presence of ethylenediamine tetraacetic acid. Thin Solid Films 694, 137579 (2020).Google Scholar
Saroukhani, Z., Tahmasebi, N., Mahdavi, S.M., and Ali, N.: Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci. 38, 16451650 (2015).CrossRefGoogle Scholar