Published online by Cambridge University Press: 02 October 2018
Pressureless sintering is a simple and traditional processing method for producing dense ceramics by heating at a high temperature. The introduction of water vapor into this atmosphere can decrease the sintering temperature and accelerate grain growth. In this work, we report water vapor-assisted sintering of submicrometer titania (TiO2) powder. Dense TiO2 pellets with a relative density over 99% were obtained in 0.1 MPa of water vapor at a lower temperature than in air. The submicrometer particles (∼0.5 µm) grew to an average size of 181 µm after sintering at 1400 °C in water vapor, whereas the particle size obtained by sintering in air was 51 µm. Furthermore, we verified the incorporation of oxygen from water vapor into TiO2 by using isotopically labeled water (H218O). Water vapor-assisted sintering can potentially lead to the production of single crystal-like ceramics by a pressureless route and without any additives.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.