Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T12:47:43.188Z Has data issue: false hasContentIssue false

Gradient microstructure and texture in wedge-based severe plastic burnishing of copper

Published online by Cambridge University Press:  27 April 2018

Zhiyu Wang
Affiliation:
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia
Saurabh Basu
Affiliation:
The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Tejas G. Murthy
Affiliation:
Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
Christopher Saldana*
Affiliation:
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia
*
a)Address all correspondence to this author. e-mail: christopher.saldana@me.gatech.edu
Get access

Abstract

In the present study, gradient microstructure and texture development in wedge-based severe plastic burnishing of oxygen-free high conductivity copper was investigated. Microstructural response and evolution of crystallographic texture in severe surface plastic deformation was shown to be controllable in terms of both magnitude and gradient through control of the incident wedge angle and burnishing parameters. Equiaxed ultra-fined grains and micro/nanoscale elongated grains were produced in the subsurface region, which is indicative of dynamic recrystallization at large strains in the subsurface. Subsurface regions exhibited a significant fraction of shear texture components along the 〈110〉 partial fibers. Texture evolution simulated using the visco-plastic self-consistent framework revealed variations in strain level controlling different mechanisms for rotation of these partial fibers from their ideal orientation. Controllability of subsurface properties and microstructure for such materials is briefly discussed. These results allude to fundamental limits in material processing by severe shear using scalable deformation configurations.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Deng, S.Q., Godfrey, A., Liu, W., and Hansen, N.: A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scr. Mater. 117, 41 (2016).10.1016/j.scriptamat.2016.02.007CrossRefGoogle Scholar
Liu, X.C., Zhang, H.W., and Lu, K.: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2013).10.1126/science.1242578CrossRefGoogle ScholarPubMed
Guo, Y., Saldana, C., Dale Compton, W., and Chandrasekar, S.: Controlling deformation and microstructure on machined surfaces. Acta Mater. 59, 4538 (2011).10.1016/j.actamat.2011.03.076CrossRefGoogle Scholar
Pu, Z., Yang, S., Song, G.L., Dillon, O.W., Puleo, D.A., and Jawahir, I.S.: Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr. Mater. 65, 520 (2011).10.1016/j.scriptamat.2011.06.013CrossRefGoogle Scholar
Huang, H.W., Wang, Z.B., Yong, X.P., and Lu, K.: Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment. Mater. Sci. Technol. 29, 1200 (2013).10.1179/1743284712Y.0000000192CrossRefGoogle Scholar
Lu, K.: Making strong nanomaterials ductile with gradients. Science 345, 1455 (2014).10.1126/science.1255940CrossRefGoogle ScholarPubMed
Wu, X., Jiang, P., Chen, L., Yuan, F., and Zhu, Y.T.: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014).10.1073/pnas.1324069111CrossRefGoogle ScholarPubMed
Guo, Y., Compton, W.D., and Chandrasekar, S.: In situ analysis of flow dynamics and deformation fields in cutting and sliding of metals. Proc. R. Soc. A 471, 2178 (2015).10.1098/rspa.2015.0194CrossRefGoogle Scholar
Murthy, T.G., Saldana, C., Hudspeth, M., and Saoubi, R.M.: Deformation field heterogeneity in punch indentation. Proc. R. Soc. A 470, 1 (2014).10.1098/rspa.2013.0807CrossRefGoogle ScholarPubMed
Li, W.L., Tao, N.R., and Lu, K.: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546 (2008).10.1016/j.scriptamat.2008.05.003CrossRefGoogle Scholar
Wang, T.S., Yang, J., Shang, C.J., Li, X.Y., Lv, B., Zhang, M., and Zhang, F.C.: Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment. Surf. Coating. Technol. 202, 4036 (2008).10.1016/j.surfcoat.2008.02.013CrossRefGoogle Scholar
Basu, S. and Shankar, M.R.: Spatial confinement-induced switchover in microstructure evolution during severe plastic deformation at micrometer length scales. Acta Mater. 79, 146 (2014).10.1016/j.actamat.2014.07.004CrossRefGoogle Scholar
Basu, S., Wang, Z., Liu, R., and Saldana, C.: Enhanced subsurface grain refinement during transient shear-based surface generation. Acta Mater. 116, 114 (2016).10.1016/j.actamat.2016.06.033CrossRefGoogle Scholar
Brown, T.L., Saldana, C., Murthy, T.G., Mann, J.B., Guo, Y., Allard, L.F., King, A.H., Compton, W.D., Trumble, K.P., and Chandrasekar, S.: A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57, 5491 (2009).10.1016/j.actamat.2009.07.052CrossRefGoogle Scholar
Mahato, A., Guo, Y., Sundaram, N.K., and Chandrasekar, S.: Surface folding in metals: A mechanism for delamination wear in sliding. Proc. R. Soc. A 470, 20140297 (2014).10.1098/rspa.2014.0297CrossRefGoogle ScholarPubMed
Beyerlein, I.J. and Tóth, L.S.: Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54, 427 (2009).10.1016/j.pmatsci.2009.01.001CrossRefGoogle Scholar
Gu, C.F., Tóth, L.S., Arzaghi, M., and Davies, C.H.J.: Effect of strain path on grain refinement in severely plastically deformed copper. Scr. Mater. 64, 284 (2011).10.1016/j.scriptamat.2010.10.002CrossRefGoogle Scholar
Basu, S. and Ravi Shankar, M.: Crystallographic textures resulting from severe shear deformation in machining. Metall. Mater. Trans. A 46, 801 (2014).10.1007/s11661-014-2672-8CrossRefGoogle Scholar
Sagapuram, D., Efe, M., Moscoso, W., Chandrasekar, S., and Trumble, K.P.: Controlling texture in magnesium alloy sheet by shear-based deformation processing. Acta Mater. 61, 6843 (2013).10.1016/j.actamat.2013.07.063CrossRefGoogle Scholar
Bruck, H.A., McNeill, S.R., Sutton, M.A., and Peters, W.H.: Digital image correlation using Newton–Raphson method of partial differential correction. Exp. Mech. 29, 261 (1989).10.1007/BF02321405CrossRefGoogle Scholar
Lava, P., Cooreman, S., and Debruyne, D.: Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Optic Laser. Eng. 48, 457 (2010).10.1016/j.optlaseng.2009.08.013CrossRefGoogle Scholar
Lebensohn, R.A. and Tomé, C.N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611 (1993).10.1016/0956-7151(93)90130-KCrossRefGoogle Scholar
Li, S., Beyerlein, I.J., Necker, C.T., Alexander, D.J., and Bourke, M.: Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater. 52, 4859 (2004).10.1016/j.actamat.2004.06.042CrossRefGoogle Scholar
Fang, N.: Tool-chip friction in machining with a large negative rake angle tool. Wear 258, 890 (2005).10.1016/j.wear.2004.09.047CrossRefGoogle Scholar
Saldana, C., Basu, S., Wang, Z., and Woodruff, G.W.: Deformation heterogeneity and texture in surface severe plastic deformation of copper. Proc. R. Soc. London, Ser. A 472, 20150486 (2016).Google Scholar
Hughes, D.A. and Hansen, N.: Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985 (2000).10.1016/S1359-6454(00)00082-3CrossRefGoogle Scholar
Abolghasem, S., Basu, S., and Shankar, M.R.: Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates. J. Mater. Res. 28, 2056 (2013).10.1557/jmr.2013.201CrossRefGoogle Scholar
Basu, S., Wang, Z., and Saldana, C.: Anomalous evolution of microstructure and crystallographic texture during indentation. Acta Mater. 105, 25 (2016).10.1016/j.actamat.2015.12.028CrossRefGoogle Scholar
Polkowski, W., Jóźwik, P., Polański, M., and Bojar, Z.: Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater. Sci. Eng., A 564, 289 (2013).10.1016/j.msea.2012.12.006CrossRefGoogle Scholar
Findley, W.N. and Reed, R.M.: The influence of extreme speeds and rake angles in metal cutting. J. Eng. Ind. 85, 49 (1963).10.1115/1.3667587CrossRefGoogle Scholar
Huang, W.H., Chang, L., Kao, P.W., and Chang, C.P.: Effect of die angle on deformation texture of copper processed by equal channel angular extrussion. Mater. Sci. Eng., A 307, 113 (2001).10.1016/S0921-5093(00)01881-5CrossRefGoogle Scholar
Gholinia, A., Bate, P., and Prangnell, P.B.: Modelling texture development during equal channel angular extrusion of aluminium. Acta Mater. 50, 2121 (2002).10.1016/S1359-6454(02)00055-1CrossRefGoogle Scholar
Beladi, H., Cizek, P., and Hodgson, P.D.: Dynamic recrystallization of austenite in Ni–30% Fe model alloy: Microstructure and texture evolution. Metall. Mater. Trans. A 40, 1175 (2009).10.1007/s11661-009-9799-zCrossRefGoogle Scholar

Wang et al. supplementary movie

Supplementary movie

Download Wang et al. supplementary movie(Video)
Video 24.4 MB