Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T15:11:00.944Z Has data issue: false hasContentIssue false

Fracture of nanoporous methyl silsesquioxane thin-film glasses

Published online by Cambridge University Press:  01 April 2006

Eric P. Guyer
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, California 94305
Matthias Patz
Affiliation:
Tsukuba Research Laboratory, JSR Corporation, Tsukuba, Ibaraki 305-0851, Japan
Reinhold H. Dauskardt*
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, California 94305
*
b)Address all correspondence to this author. e-mail: dauskardt@stanford.edu
Get access

Abstract

The fracture of nanoporous methylsilsesquioxane thin-film glasses in moist air and aqueous solutions was investigated. We demonstrate the effects of controlled volume fractions of nanometer sized pores on the films resistance to fracture. Subcritical cracking accelerated by the presence of moisture, controlled pH, and hydrogen peroxide solutions is reported. Surprising changes in the near threshold growth rate behavior were observed for buffered solutions. We demonstrate that these changes are related to the unexpected diffusion of the aqueous solutions into the highly hydrophobic films. The presence of the solution changes the surface stress of the internal pore surfaces, which changes the stress state of the film. The change in film stress surrounding the crack alters the crack driving force and has profound effects on the resulting crack-growth threshold behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Desai, T., Hansford, D., Leoni, L., Essenpreis, M., Ferrari, M.: Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens. Bioelectron. 15(9–10), 453 (2000).CrossRefGoogle ScholarPubMed
2.Cheetham, A.K., Ferey, G., Loiseau, T.: Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3269 (1999).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
3.Dabrowski, A.: Adsorption—From theory to practice. Adv. Colloid Interf. Sci. 93(1–3), 135 (2001).CrossRefGoogle ScholarPubMed
4.Coakley, K.M., McGehee, M.D.: Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett. 83, 3380 (2003).CrossRefGoogle Scholar
5.Nguyen, C.V., Carter, K.R., Hawker, C.J., Hedrick, J.L., Jaffe, R.L., Miller, R.D., Remenar, J.F., Rhee, H.W., Rice, P.M., Toney, M.F., Trollsas, M., Yoon, D.Y.: Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates. Chem. Mater. 11, 3080 (1999).CrossRefGoogle Scholar
6.Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y., Trollsas, M.: Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 10, 1049 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
7.Iacopi, F., Patz, M., Vos, I., Tokei, Z., Sijmus, B., Le, Q., Sleeckx, E., Eyckens, B., Struyf, H., Das, A., Maex, K.: Impact of LKD5109 low-k to cap/liner interfaces in single damascene process and performance. Microelectron. Eng. 70(2/4), 293 (2003).CrossRefGoogle Scholar
8.Cook, R., Liniger, E.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146, 4439 (1999).CrossRefGoogle Scholar
9.Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, (8), 407 (1967).CrossRefGoogle Scholar
10.Lane, M.W., Snodgrass, J.M., Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41(9–10), 1615 (2001).CrossRefGoogle Scholar
11.Guyer, E.P., Dauskardt, R.H.: Effect of solution pH on subcritical crack growth in low-k dielectric thin-films. J. Mater. Res. 20, 680687(2005).CrossRefGoogle Scholar
12.Vlassak, J.J., Lin, Y., Tsui, T.Y.: Fracture of organosilicate glass thin films: environmental effects. Mater. Sci. Eng. A 391, 159 (2004).CrossRefGoogle Scholar
13.Guyer, E.P., Dauskardt, R.H.: Fracture of nanoporous thin-film glasses. Nat. Mater. 3(1), 53 (2004).CrossRefGoogle ScholarPubMed
14.Das, A., Le, Q.T., Furukawa, Y., Nguyen, V.H., Terzieva, V., de Theije, F., Whelan, C.M., Maenhoudt, M., Struyf, H., Tokei, Z., Iacopi, F., Stucchi, M., Carbonell, L., Vos, I., Bender, H., Patz, M., Beyer, G., Van Hove, M., Maex, K.: Characterisation of JSR's spin-on hardmask FF-02. Microelectron. Eng. 70(2/4), 306 (2003).CrossRefGoogle Scholar
15.Lane, M., Dauskardt, R.H., Vainchtein, A., Gao, H.: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758 (2000).CrossRefGoogle Scholar
16.Kook, S.Y., Dauskardt, R.H.: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).CrossRefGoogle Scholar
17.Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141 (1998).CrossRefGoogle Scholar
18.Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G., Hutchinson, J.W.: Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures. J. Mater. Res. 16, 243 (2001).CrossRefGoogle Scholar
19.Rim, J. and Dauskardt, R.H. (2004, unpublished).Google Scholar
20.Maidenberg, D.A., Volksen, W., Miller, R.D., Dauskardt, R.H.: Toughening of nanoporous glasses using porogen residuals. Nat. Mater. 3(7), 464 (2004).CrossRefGoogle ScholarPubMed
21.Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties (Pergamon Press, New York, 1988).Google Scholar
22.Zwissler, J.G., Adams, M.A.: Stress-corrosion degradation of a developmental aluminoborosilicate cellular glass. J. Metals 33(9), A41 (1981).Google Scholar
23.Cook, R.F., Liniger, E.G.: Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096 (1993).CrossRefGoogle Scholar
24.Lane, M.W., Liu, X.H., Shaw, T.M.: Environmental effects on cracking and delamination of dielectric films. IEEE Trans. Dev. Mater. Reliab. 4(2), 142 (2004).CrossRefGoogle Scholar
25.Lin, E.K., Lee, H.J., Lynn, G.W., Wu, W.L., O’Neill, M.L.: Structural characterization of a porous low-dielectric constant thin film with a non-uniform depth profile. Appl. Phys. Lett. 81(4), 607 (2002).CrossRefGoogle Scholar
26.Lane, M., Ware, R., Voss, S., Ma, Q., Fujimoto, H., Dauskardt, R.H.: Progressive debonding of multilayer interconnect structures, in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E., Jr., and Z. Suo (Mater. Res. Soc. Symp. Proc. 473 Pittsburgh, PA, 1997), p. 21.Google Scholar
27.Evans, A.G., Hutchinson, J.W.: Effects of non-planarity on the mixed-mode fracture resistance of bimaterial interfaces. Acta Metall. 37, 909 (1989).CrossRefGoogle Scholar
28.Lawn, B.R.Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
29.Kanninen, M.F.: Augmented double cantilever beam model for studying crack-propagation and arrest. Int. J. Fract. 9(1), 83 (1973).CrossRefGoogle Scholar
30.Strohband, S. and Dauskardt, R.H., Effect of barrier layer properties on adhesion in thin-film structures. (unpublished).Google Scholar
31.Lane, M., Ni, W., Dauskardt, R.H., Ma, Q., Fujimoto, H., and Krishna, N.: Effects of interface nonplanarity on the interface fracture energy of the TiN/SiO2 system, in Thin-Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505 Warrendale, PA, 1998), p. 357.Google Scholar
32.Wiederhorn, S.M., Johnson, H.: Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56(4), 192 (1973).CrossRefGoogle Scholar
33.Wiederhorn, S.M., Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53(10), 543 (1970).CrossRefGoogle Scholar
34.Michalske, T.A., Bunker, B.C., Keefer, K.D.: Mechanical-properties and adhesion of hydrated glass-surface layers. J. Non-Cryst. Solids 120(1–3), 126 (1990).CrossRefGoogle Scholar
35.Dyer, T.W.: Moisture instability of borophosphosilicate glass and effects of thermal treatment. J. Electrochem. Soc. 145, 3950 (1998).CrossRefGoogle Scholar
36.McInemey, E.J. and Flinn, P.A.: IEEE Proc. 20th Intern. Reliability Physics, 1979, 111, New York.Google Scholar
37.Guyer, E.P. and Dauskardt, R.H.: Diffusion of aqueous solutions into hydrophobic nanoporous thin-films (2005, unpublished).Google Scholar
38.Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Sci. 3, 108 (1876).Google Scholar
39.Nix, W.D. private communication, Stanford University (2005).Google Scholar
40.Huang, E., Toney, M.F., Volksen, W., Mecerreyes, D., Brock, P., Kim, H.C., Hawker, C.J., Hedrick, J.L., Lee, V.Y., Magbitang, T., Miller, R.D., Lurio, L.B.: Pore-size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Appl. Phys. Lett. 81(12), 2232 (2002).CrossRefGoogle Scholar
41.Shamiryan, D., Abell, T., Le, Q.T., Maex, K.: Pinhole density measurements of barriers deposited on low-k films. Microelectron. Eng. 70(2/4), 341 (2003).CrossRefGoogle Scholar
42.Shaw, T.M., Jimerson, D., Haders, D., Murray, C.E., Grill, A., Edelstein, D.C., and Chidambarrao, D.: Moisture and oxygen uptake in low k/copper interconnect structures, in Advanced Metallization Conference 2003 (AMC 2003), edited by Ray, G.W., Smy, T., Ohta, T., and Tsujimura, M. (Mater. Res. Soc., Warrendale, PA, 2004), p. 77.Google Scholar
43.Worsley, M.A., Bent, S.F., Gates, S.M., Shaw, T., Volksen, W., Miller, R.D.: Microelectron. Eng. 82(2), 113118(2005).CrossRefGoogle Scholar
44.McMeeking, R., Evans, A.: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65(5), 242 (1982).CrossRefGoogle Scholar
45.Budiansky, B., Hutchinson, J.W., Lambropoulous, J.C.: Continuum theory of dilatent transformation toughening in ceramics. Int. J. Solids Struct. 19(4), 337 (1983).CrossRefGoogle Scholar
46.Hutchinson, J.W.: Crack tip shielding by micro-cracking in brittle solids. Acta Metall. 35, 1605 (1987).CrossRefGoogle Scholar
47.Marshall, D.B., Shaw, M.C., Dauskardt, R.H., Ritchie, R.O., Readey, M.J., Heuer, A.H.: Crack-tip transformation zones in toughened zirconia. J. Am. Ceram. Soc. 73, 2659 (1990).CrossRefGoogle Scholar
48.Lawn, B.R.: Interfacial forces and the fundamental nature of brittle cracks. Appl. Phys. Lett. 47, 809 (1985).CrossRefGoogle Scholar
49.Wiederhorn, S.M., Fuller, E.R.: Effect of surface forces on subcritical crack-growth in glass. J. Am. Ceram. Soc. 72, 248 (1989).CrossRefGoogle Scholar
50.Israelachvili, J.N., Pashley, R.M.: Measurement of the hydrophobic interaction between 2 hydrophobic surfaces in aqueous-electrolyte solutions. J. Colloid Interface Sci. 98, 500 (1984).CrossRefGoogle Scholar
51.Vigil, G., Xu, Z.H., Steinberg, S., Israelachvili, J.: Interactions of silica surfaces. J. Colloid Interface Sci. 165, 367 (1994).CrossRefGoogle Scholar