Published online by Cambridge University Press: 31 January 2011
The effect of thickness on methanol transport in fourteen-year-old crosslinked poly(methyl methacrylate) was investigated. The samples studied here are from the same primary source of those used by a study made fourteen years earlier. The sample was encapsulated by a plastic bag and maintained in a desiccator at room temperature. Four thicknesses, 0.6, 1.0, 1.5, and 1.9 mm, were examined. Methanol sorption data were fit to a model in which the mass sorption is a combination of case I, case II, and anomalous sorption. The diffusion coefficient for case I transport increases with increasing thickness, but the velocity for case II transport does the opposite. The diffusion coefficient for case I transport and the velocity for case II transport exhibit the Arrhenius behavior. The activation energies for case II transport are 18.9, 16.3, 14.6, and 13.4 kcal/mole, corresponding to the thicknesses 0.6, 1.0, 1.5, and 1.9 mm, respectively. The activation energies for case I transport are 24.7, 24.2, 21.7, and 21.9 kcal/mole, corresponding to the thicknesses 0.6, 1.0, 1.5, and 1.9 mm, respectively. For thickness 1.5 mm the activation energies for case I and case II transport are 21.7 and 14.6 kcal/mole for this study and 24.9 and 17.3 kcal/mole obtained fourteen years ago.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.