Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:39:18.614Z Has data issue: false hasContentIssue false

Formation of carbon capsules from an amorphous carbon film by Ga and Ni/Co catalysts in a transmission electron microscope

Published online by Cambridge University Press:  31 January 2011

Cheng-Yu Wang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701
Yen-Chih Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701
Wen-Huei Chu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701
Chuan-Pu Liu*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701; and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701
C.B. Boothroyd
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore, 117602
*
a) Address all correspondence to this author. e-mail: cpliu@mail.ncku.edu.tw
Get access

Abstract

Direct conversion of an amorphous carbon (C) film to capsules by gallium (Ga), and nickel and cobalt (NiCo) alloy particles upon heating is investigated in situ by transmission electron microscopy (TEM). Capsules are catalyzed in an NH3 atmosphere when the temperature is raised to 1050 °C. High resolution TEM reveals that graphene flakes initially nucleate at the surface of the catalysts, then segregate and transform into faceted multi-shell capsules upon continued heating. The solubility of carbon in the NiCo alloy particles can be differentiated from the solubility of carbon in Ga particles by the thickness of the walls. The C/Ga binary phase in nanoparticles is discussed regarding the formation of thin-walled carbon capsules.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., Snoeck, E., and Chaudret, B.: Multimillimetre-large super lattice of air-stable nanoparticles. Nat. Mater. 4, 750 (2005).CrossRefGoogle Scholar
2Seo, W.S., Lee, J.H., Sun, X., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P.C., McConnell, M.V., Nishimura, D.G., and Dai, H.J.: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971 (2006).CrossRefGoogle ScholarPubMed
3Jiao, J., Seraphin, S., Wang, X., and Withers, J.C.: Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nano-particles. J. Appl. Phys. 80, 103 (1996).CrossRefGoogle Scholar
4Host, J.J., Block, J.A., Parvin, K., Dravid, V.P., Alpers, J.L., Sezen, T., and LaDuca, R.: Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals. J. Appl. Phys. 83, 793 (1998).Google Scholar
5Turgut, Z., Scott, J.H., Huang, M.Q., Majetich, S.A., and McHenry, M.E.: Magnetic soft magnetic materials. J. Appl. Phys. 83, 6468 (1998).Google Scholar
6Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
7Ebbesen, T.W. and Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992).CrossRefGoogle Scholar
8Ugarte, D.: Morphology and structure of graphitic soot particles in arc-discharge C60 production. Chem. Phys. Lett. 198, 596 (1992).Google Scholar
9Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T.: Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chem. Phys. Lett. 204, 277 (1993).Google Scholar
10Ruoff, R.S., Lorents, D.C., Chan, B., Malhorta, R., and Subramoney, S.: Single crystal metals encapsulated in carbon nanoparticles. Science 259, 346 (1993).CrossRefGoogle ScholarPubMed
11Shinohara, H., Sato, H., Ohkohchi, M., Ando, Y., Kodama, T., Shida, T., Kodama, T., Shida, T., Kato, T., and Saito, Y.: Encapsulation of a scandium trimer in C82. Nature 357, 52 (1992).Google Scholar
12Bethune, D.S., Johnson, R.D., Salem, J.R., de, M.S. Vries, and Yannoni, C.S.: Atoms in carbon cages: The structure and properties of endohedral fullerenes. Nature 366, 123 (1993).Google Scholar
13Saito, Y., Yoshiokawa, T., Okuda, M., Fijimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuy, A., and Nishina, Y.: Iron particles nesting in carbon cages grown by arc-discharge. Chem. Phys. Lett. 212, 379 (1993).Google Scholar
14Tomita, M., Saito, Y., and Hayashi, T.: LaC2 encapsulated in graphite nano-particles. Jpn. J. Appl. Phys. 32, L280 (1993).Google Scholar
15Seraphin, S., Zhou, D., and Jiao, J.: Filling the carbon nanocages. J. Appl. Phys. 80, 2097 (1996).CrossRefGoogle Scholar
16Schaper, A.K., Hou, H., Greiner, A., Schneider, R., and Philipp, F.: Copper nanoparticles encapsulated in multi-shell carbon cages. Appl. Phys. A 78, 73 (2004).Google Scholar
17Yu, J.S.: Fabrication of bimodal porous silica with zeolite crystal core/mesoporous shell and corresponding nonspherical hollow carbon capsules. Rev. Adv. Mat. Sci. 10, 341 (2005).Google Scholar
18Yu, J.S., Yoon, S.B., Lee, Y.J., and Yoon, K.B.: Fabrication of bimodal porous silicate with silicate-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nano-cases with hollow core/mesoporous shell structures. J. Phys. Chem. B 109, 7040 (2005).CrossRefGoogle Scholar
19Ariga, K., Vinu, A., Miyahara, M., Hill, J.P., and Mori, T.: One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. J. Am. Chem. Soc. 129, 11022 (2007).Google Scholar
20Ji, Q., Miyahara, M., Hill, J.P., Acharya, S., Vinu, A., Yoon, S.B., Yu, J.S., Sakamoto, K., and Ariga, K.: Stimuli-free auto-modulated material release from mesoporous nanocompartment films. J. Am. Chem. Soc. 130, 2376 (2008).CrossRefGoogle ScholarPubMed
21Sheng, Z.M. and Wang, J.N.: Thin-walled carbon nanocages: Direct growth, characterization and applications. Adv. Mater. 20, 1071 (2008).Google Scholar
22Xu, B.S. and Tanaka, S.I.: Formation of giant onion-like fullerene under Al nanoparticles by electron irradiation. Acta Mater. 46, 5249 (1998).CrossRefGoogle Scholar
23Sutter, E., Sutter, P., and Zhu, Y.: Assembly and interaction of Au/C core-shell nanostructures: In situ observation in the transmission electron microscope. Nano Lett. 5, 2092 (2005).CrossRefGoogle ScholarPubMed
24Anton, R.: In situ transmission-electron-microscopy study of the growth of Ni nanoparticles on amorphous carbon of the graphitization of the support in the presence of hydrogen. J. Mater. Res. 20, 1837 (2005).CrossRefGoogle Scholar
25Banhart, F., Charlier, J.C., and Ajayan, P.M.: Dynamical behavior of nickel atoms in graphitic networks. Phys. Rev. Lett. 84, 686 (2000).Google Scholar
26Banhart, F. and Ajayan, P.M.: Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433 (1996).Google Scholar
27Jiang, Q., Aya, N., and Shi, F.G.: Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl. Phys. A 64, 627 (1997).CrossRefGoogle Scholar
28Baker, H.: Alloy Phase Diagram, Vol. 3, ASM Handbook.Google Scholar
29Badzian, A.R. and Klokocki, A.: On the catalytic growth of synthetic diamonds. J. Cryst. Growth 52, 843 (1961).CrossRefGoogle Scholar
30Lulli, G., Parisini, A., and Mattei, G.: Influence of electron-beam parameters on the radiation-induced formation of graphitic onions. Ultramicroscopy 60, 187 (1995).CrossRefGoogle Scholar
31Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferari, A., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., and Robertson, J.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602 (2007).Google Scholar