Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:26:00.309Z Has data issue: false hasContentIssue false

The formation of amorphous Ni–B by solid state and ion-beam reaction

Published online by Cambridge University Press:  31 January 2011

A. N. Campbell
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
C. R. Hills
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

An amorphous Ni–B alloy was formed at the interfaces between layers of polycrystalline nickel and amorphous boron during electron-beam deposition of Ni/B/Ni trilayer structures. Formation of the amorphous alloy appears to be thermally-assisted and, in addition, the amorphous alloy regions can be extended by post-deposition ion-beam mixing. The existence of an upper limit to the thickness of the amorphous Ni–B alloy layer which forms (40 nm) indicates that the amorphous layer serves as a reaction or diffusion barrier. It has been shown for the first time that an amorphous metal-boron alloy is produced by thermal solid state amorphization reaction (SSAR).

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwarz, R.B. and Johnson, W.L.Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2Clemens, B.M.Johnson, W.L. and Schwarz, R.B.J. Non-Cryst. Solids 61 & 62, 817 (1984).CrossRefGoogle Scholar
3Schroder, H.Samwer, K. and Koster, U.Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
4Schwarz, R.B. and Koch, C. C.Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
5Yeh, X.L.Samwer, K. and Johnson, W.L.Appl. Phys. Lett. 42, 242 (1983).Google Scholar
6Atzmon, M.Johnson, W.L. and Verhoeven, J.D.Patent, U.S. No. 4,640,816 (Feb. 3, 1987).Google Scholar
7Herd, S.Tu, K.N., and Ahn, K. Y.Appl. Phys. Lett. 42, 597 (1983).CrossRefGoogle Scholar
8Ossi, P. M.Mater. Sci. Engr. 90, 55 (1987).CrossRefGoogle Scholar
9Liu, B.X.Phys. Status Solidi A94, 11 (1986).Google Scholar
10Johnson, W. L.Prog, in Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
11Vanderwalker, D.M.Appl. Phys. Lett. 48, 707 (1986).CrossRefGoogle Scholar
12Natan, M.Appl. Phys. Lett. 49, 257 (1986).CrossRefGoogle Scholar
13Holloway, K. and Sinclair, R.J. Appl. Phys. 61, 1359 (1987) and J. Less-Common Met. 140, 139 (1988).CrossRefGoogle Scholar
14Raaijmakers, I. J. M. M.Reader, A. H. and Oosting, P. H.J. Appl. Phys. 63, 2790 (1988).CrossRefGoogle Scholar
15Clemens, B.M. and Neumeier, J. J.J. Appl. Phys. 58, 4061 (1985).CrossRefGoogle Scholar
16Schwarz, R. B. (private communication).Google Scholar
17Kubaschewski, O. and Alcock, C.B.Metallurgical Thermochemistry, 5th ed. (Pergamon Press, New York, 1979), pp. 284 and 300.Google Scholar
18Guzman, L.Elena, M.Guinta, G.Marchetti, F.Ossi, P. M.Rion-tino, G., and Zanini, V. in Amorphous and Liquid Metals, edited by Luscher, E.Fritsch, G. and Jacucci, G.Proc. NATO Conference, 1987, p. 498.CrossRefGoogle Scholar
19Clemens, B.M. (private communication).Google Scholar
20Spaepen, F.Mater. Sci. Engr. 97, 403 (1988).CrossRefGoogle Scholar
21Barbour, J. C.Saris, F. W.Nastasi, M. and Mayer, J. W.Phys. Rev. B32, 1363 (1985).Google Scholar
22Newcomb, S.B. and Tu, K. N.Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar
23Appleton, B. R. in Ion Implantation and Beam Processing, edited by Williams, J.S. and Poate, J.M. (Academic Press, New York, 1984), pp. 208211.Google Scholar