Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:24:20.182Z Has data issue: false hasContentIssue false

Forging, textures, and deformation systems in a B2 FeAl alloy

Published online by Cambridge University Press:  31 January 2011

P. Zhao
Affiliation:
Institute of Structural Metallurgy, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; and CENIM, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
D. G. Morris
Affiliation:
Institute of Structural Metallurgy, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; and CENIM, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
M. A. Morris Munoz
Affiliation:
Institute of Structural Metallurgy, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; and CENIM, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
Get access

Abstract

High-temperature forging experiments have been carried out by axial compression testing on a Fe–41Al–2Cr alloy in order to determine the deformation systems operating under such high-speed, high-temperature conditions, and to examine the textures produced by such deformation and during subsequent annealing to recrystallize. Deformation is deduced to take place by the operation of 〈111〉 {110} and 〈111〉{112} slip systems at low temperatures and by 〈100〉{001} and 〈100〉{011} slip systems at high temperatures, with the formation of the expected strong 〈111〉 textures. The examination of the weak 〈100〉 texture component is critical to distinguishing the operating slip system. Both texture and dislocation analyses are consistent with the operation of these deformation systems. Recrystallization takes place extremely quickly at high temperatures (above 800 °C), that is within seconds after deformation and also dynamically during deformation itself. Recrystallization changes the texture such that 〈100〉 textures superimpose on the deformation texture. The flow stress peak observed during forging is found at a very high temperature. Possible origins of the peak are examined in terms of the operating slip systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schroer, W., Mecking, H., and Hartig, C., in Proc. Int. Symp. Intermetallic Compounds—Structure and Mechanical Properties (JIMIS-69), edited by Izumi, O., The Japan Institute of Metals, Sendai (1991), p. 567.Google Scholar
2.Schroer, W., Hartig, C., and Mecking, H., Z. Metall. 84, 294 (1993).Google Scholar
3.Morris, D. G., Peguiron, D., and Nazmy, M., Philos. Mag. A71, 441 (1995).CrossRefGoogle Scholar
4.Yoshimi, K., Hanada, S., and Yoo, M.H., Acta Metall. Mater. 43, 4141 (1995).CrossRefGoogle Scholar
5.Umakoshi, Y. and Yamaguchi, M., Philos. Mag. A41, 573 (1980).CrossRefGoogle Scholar
6.Baker, I., Xiao, H., Klein, O., Nelson, C., and Whittenberger, J. D., Acta Metall. Mater. 43, 1723 (1995).CrossRefGoogle Scholar
7.George, E.P. and Baker, I., Philos. Mag. A77, 737 (1998).CrossRefGoogle Scholar
8.Baker, I., Mater. Sci. Eng. A192/193, 1 (1995).CrossRefGoogle Scholar
9.Yoshimi, K., Hanada, S., and Yoo, M.H., in High-Temperature Ordered Intermetallic Alloys VII, edited by Koch, C. C., Liu, C.T., Stoloff, N.S., and Wanner, A. (Mater. Res. Soc. Symp. Proc. 460, Pittsburgh, PA, 1997), p. 313.Google Scholar
10.Morris, D.G., in Proc. 4th Int. Conf. on High Temperature Intermetallics, edited by Liu, C.T., Whang, S. H., and Pope, D.P., Mater. Sci. Eng. A239–240, 23 (1997).Google Scholar
11.Yoshimi, K. and Hanada, S., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 475.Google Scholar
12.Morris, D. G., Philos. Mag. A71, 1281 (1995).CrossRefGoogle Scholar
13.Kad, B. K. and Horton, J. A., in Proc. 4th Int. Conf. on High Temperature Intermetallics, edited by Liu, C. T., Whang, S. H., and Pope, D. P., Mater. Sci. Eng. A239–240, 118 (1997).Google Scholar
14.Hanada, S., Watanabe, S., Sato, T., and Izumi, O., Scripta Metall. 15, 1345 (1981).CrossRefGoogle Scholar
15.Brinck, A., Engelke, C., and Neuhauser, H., Mater. Sci. Eng. A234, 418 (1997).CrossRefGoogle Scholar
16.Molenat, G., Couret, A., and Caillard, D., Mater. Sci. Eng. A234, 660 (1997).CrossRefGoogle Scholar
17.Raabe, D. and Mao, W., Philos. Mag. A71, 805 (1995).CrossRefGoogle Scholar
18.Raabe, D., Acta Mater. 44, 937 (1996).CrossRefGoogle Scholar
19.Kad, B.K., Schoenfeld, S. E., Asaro, R. J., McKamey, C. G., and Sikka, V.K., Acta Mater. 45, 1333 (1997).CrossRefGoogle Scholar
20.Morris, D.G. and Morris, M. A., Intermetallics 5, 245 (1997).CrossRefGoogle Scholar
21.Scheff, S.A., Stout, J.J., and Crimp, M. A., Scripta Metall. et Mater. 32, 975 (1995).CrossRefGoogle Scholar
22.Morris, D.G. and Gunther, S., Scripta Mater. 35, 1211 (1996).CrossRefGoogle Scholar
23.Anderson, I. M., Acta Mater. 45, 3897 (1997).CrossRefGoogle Scholar
24.Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley Pub. Co., Reading, MA, 1956).Google Scholar
25.Li, X. and Baker, I., Scripta Mater. 36, 1387 (1997).CrossRefGoogle Scholar
26.Baker, I. and Yang, Y., Mater. Sci. Eng. A239–240, 109 (1997).CrossRefGoogle Scholar
27.Morris, D.G. and Gunther, S., Mater. Sci. Eng. A211, 23 (1996).CrossRefGoogle Scholar