Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:39:58.978Z Has data issue: false hasContentIssue false

A first-principles study on hot crack mechanism in Mg-Al-Ca alloys

Published online by Cambridge University Press:  20 March 2012

Hui Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Shaoqing Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zhanghui@imr.ac.cn
Get access

Abstract

The use of Mg-Al-Ca alloys is limited mainly due to the hot crack defect. The exact mechanism of hot crack formation is not yet clearly understood. In this article, the hot crack mechanism is established from the present first-principles calculations based on the density functional theory and density functional perturbation theory . The thermal expansion behavior of Mg and the critical compounds Mg2Ca and Al2Ca in Mg-Al-Ca alloys is calculated. According to the present calculations, Mg2Ca is almost equal to Mg in thermal expansion, whereas the same in Al2Ca is much too lower. Al2Ca improves the creep resistance of Mg-Al-Ca alloys due to its high thermal stability, but it also accounts for the hot crack defect due to very small thermal expansion.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aghion, E., Bronfin, B., and Eliezer, D.: The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol. 117, 381 (2001).Google Scholar
2.Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851 (2008).Google Scholar
3.Luo, A.A.: Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
4.Luo, A.A., Balogh, M.P., and Powell, B.R.: Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 33, 567 (2002).CrossRefGoogle Scholar
5.Suzuki, A., Saddock, N.D., Terbush, J.R., Powell, B.R., Jones, J.W., and Pollock, T.M.: Precipitation strengthening of a Mg-Al-Ca-based AXJ530 die-cast alloy. Metall. Mater. Trans. A 39, 696 (2008).CrossRefGoogle Scholar
6.Berkmortel, J.J., Hu, H., and Kearns, J.E.: Die cast ability assessment of magnesium alloys for high temperature applications: Part 1 of 2. SAE Trans. 109, 574 (2000).Google Scholar
7.Ninomiya, R., Ojiro, T., and Kubota, K.: Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Mater. 43, 669 (1995).Google Scholar
8.Shi, L-L., Ma, H., Liu, T., and Xu, J.: Microstructure and compressive properties of chill-cast Mg–Al–Ca alloys. J. Mater. Res. 21, 613 (2006).Google Scholar
9.Wang, Q.D., Chen, W.Z., Zeng, X.Q., Lu, Y.Z., Ding, W.J., Zhu, Y.P., and Xu, X.P.: Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. J. Mater. Sci. 36, 3035 (2001).Google Scholar
10.Agnew, S.R. and Nie, J.F.: Preface to the viewpoint set on: The current state of magnesium alloy science and technology. Scr. Mater. 63, 671 (2010).Google Scholar
11.Baroni, S., Giannozzi, P., and Lsaev, E.: Density-functional perturbation theory for quasiharmonic calculations. Rev. Mineral. Geochem. 71, 39 (2010).Google Scholar
12.Zhang, H., Shang, S.L., Wang, Y., Saengdeejing, A., Chen, L.Q., and Liu, Z-K.: First-principles calculations of the elastic, phonon, and thermodynamic properties of Mg17Al12. Acta Mater. 58, 4012 (2010).CrossRefGoogle Scholar
13.Zhou, D.W., Liu, J.S., Peng, P., Chen, L., and Hu, Y.J.: A first-principles study on the structural stability of Al2Ca Al4Ca and Mg2Ca phases. Mater. Lett. 62, 206 (2008).Google Scholar
14.Tang, T-Y., Yu, W-Y., Zeng, X-Q., Ding, W-J., and Gray, M.F.: First-principles study of the electronic structure and mechanical properties of CaMg2 laves phase. Mater. Sci. Eng., A 489, 444 (2008).Google Scholar
15.Yu, W-Y., Wang, N., Xiao, X-B., Tang, B-Y., Peng, L-M., and Ding, W-J.: First-principles investigation of the binary AB2 type Laves phase in Mg–Al–Ca alloy: Electronic structure and elastic properties. Solid State Sci. 11, 1400 (2009).Google Scholar
16.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
17.Gonze, X., Rignanese, G.M., Verstraete, M., Beuken, J.M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, P., Veithen, M., Raty, J.Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D.R., and Allan, D.C.: A brief introduction to the ABINIT software package. Zeit. Kristallogr. 220, 558 (2005).CrossRefGoogle Scholar
18.Gonze, X., Amadon, B., Anglade, P.M., Beuken, J.M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Cote, M., Deutsch, T., Genovese, L., Ghosez, P., Giantomassi, M., Goedecker, S., Hamann, D.R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M.J.T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M.J., Zerah, G., and Zwanziger, J.W.: ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582 (2009).Google Scholar
19.Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).Google Scholar
20.Gonze, X. and Lee, C.: Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).CrossRefGoogle Scholar
21.Gonze, X.: First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337 (1997).Google Scholar
22.Baroni, S., de Gironcoli, S., Corso, A.D., and Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
23.Lee, C. and Gonze, X.: Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys. Rev. B 51, 8610 (1995).Google Scholar
24.Vinet, P., Rose, J., Ferrante, J., and Smith, J.: Universal features of the equation of state of solids. J. Phys. Condens. Matter 1, 1941 (1989).Google Scholar
25.Suzuki, A., Saddock, N.D., Jones, J.W., and Pollock, T.M.: Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 53, 2823 (2005).Google Scholar
26.Ozturk, K., Zhong, Y., Luo, A.A., and Liu, Z-K.: Creep-resistant Mg–Al–Ca alloys: Computational thermodynamics and experimental investigation. JOM 55, 40 (2003).Google Scholar
27.Suzuki, A., Saddock, N.D., Jones, J.W., and Pollock, T.M.: Structure and transition of eutectic (Mg, Al)2Ca Laves phase in a die-cast Mg-Al-Ca base alloy. Scr. Mater. 51, 1005 (2001).Google Scholar
28.Zhang, H. and Wang, S.Q.: The structural stabilities of the intermetallics and the solid-state phase transformations induced by lattice vibration effects in the Al-Zr system by first-principles calculations. J. Mater. Res. 25, 1689 (2010).Google Scholar
29.Wang, S.Q.: First-principles study of the anisotropic thermal expansion of wurtzite ZnS. Appl. Phys. Lett. 88, 061902 (2006).Google Scholar
30.Schulze, A.: Allotropy investigations on very pure calcium. Z. Physik 36, 595 (1935).Google Scholar
31.Slutskv, L.J. and Garland, C.W.: Elastic constants of magnesium from 4.20K to 3000K. Phys. Rev. 107, 972 (1957).Google Scholar
32.Wallace, D.C.: Thermodynamics of Crystals (Dover, New York, 1972).Google Scholar
33.Anderson, M.S., Swenson, C.A., and Peterson, D.T.: Experimental equations of state for calcium, strontium, and barium metals to 20 kbar from 4 to 295 K. Phys. Rev. B 41, 3329 (1990).Google Scholar
34.Min, X.G., Sun, Y.S., Xue, F., Du, W.W., and Wu, D.Y.: Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg-Al-based alloys. Mater. Chem. Phys. 78, 88 (2003).CrossRefGoogle Scholar
35.Nie, Y.Z. and Xie, Y.Q.: Ab initio thermodynamics of the hcp metals Mg, Ti, and Zr. Phys. Rev. B 75, 174117 (2007).Google Scholar
36.Kim, Y-M., Kim, N.J., and Lee, B-J.: Atomistic modeling of pure Mg and Mg-Al systems. Calphad 33, 650 (2009).Google Scholar
37.Tang, B., Li, S.S., Wang, X.S., Zeng, D.B., and Wu, R.: An investigation on hot crack mechanism of Ca addition into AZ91D alloy. J. Mater. Sci. 40, 2931 (2005).Google Scholar
38.Tang, B., Li, S.S., Wang, X.S., Zeng, D.B., and Wu, R.: Effect of Ca/Sr composite addition into AZ91D alloy on hot crack mechanism. Scr. Mater. 53, 1077 (2005).Google Scholar
39.Pynn, R. and Squires, G.L.: Measurements of normal-mode frequencies of magnesium. Proc. R. Soc. London, Ser. A 326, 347 (1972).Google Scholar
40.Stassis, C., Zaretsky, J., Misemer, D.K., Skriver, H.L., Harmon, B.N., and Nicklow, R.M.: Lattice dynamics of fcc Ca. Phys. Rev. B 27, 3303 (1983).Google Scholar
41.Wachowicz, E. and kiejna, A.: Bulk and surface properties of hexagonal-close-packed Be and Mg. J. Phys. Condens. Matter 13, 10767 (2001).Google Scholar
42.Janak, J.F., Moruzzi, V.L., and Williams, A.R.: Ground state thermomechanical properties of some cubic elements in the local-density formalism. Phys. Rev. B 12, 1257 (1975).Google Scholar
43.Zhong, Y., Liu, J., Witt, R.A., Sohn, Y-h., and Liu, Z-K.: Al2(Mg, Ca) phases in Mg-Al-Ca ternary system: First-principles prediction and experimental identification. Scr. Mater. 55, 573 (2006).Google Scholar
44.Arróyave, R. and Liu, Z-K.: Intermetallics in the Mg-Ca-Sn ternary system: Structural, vibrational, and thermodynamic properties from first principles. Phys. Rev. B 74, 174118 (2006).CrossRefGoogle Scholar