Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:14:55.388Z Has data issue: false hasContentIssue false

Factors inducing degradation of properties after long-term oxidation of Si3N4–MoSi2 electroconductive composites

Published online by Cambridge University Press:  03 March 2011

V. Medri
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, 48018 Faenza, Italy
A. Bellosi*
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, 48018 Faenza, Italy
*
a) Address all correspondence to this author. e-mail: bellosi@istec.cnr.it
Get access

Abstract

The effects of heat treatments on strength and electrical conductivity after 100 h in air up to 1500 °C were evaluated on hot-pressed Si3N4–35 vol% MoSi2 composite. The long-term oxidation involves microstructural changes at the material surface and subsurface, such as the formation of oxide scales and of a multilayered microstructure. At T ⩾ 1200 °C, a glassy silicate phase is formed, which embeds cristobalite grains and highly textured Y2Si2O7 crystals. At the same time, MoSi2, assisted by oxygen, reacts with Si3N4 forming Mo5Si3, Si2N2O, and SiO2. The decrease of the room temperature flexural strength reached about 25% in the samples exposed at 1000 °C for 100 h, compared to the as-produced materials. On the contrary, after treatments at higher temperatures, the strength decrease is lower at 1500 °C, the residual strength is 836 ± 62 MPa with a strength decrease of about 8%. The surface oxide scale is an insulator and, consequently, the electrical resistivity of the composite rises from 10-3 to 107–109 Ωcm.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gogotsi, Y.G., Review-particulate silicon nitride composite. J. Mater. Sci. 29, 2541 (1994).CrossRefGoogle Scholar
2Zivkovic, L.M., Boskovic, S.M. and Miljkovic, S. Sintering behaviour and microstructure development in electroconductive Si3N4-TiN composites in Advanced Science and Technology of Sintering , edited by Stojenovich (Kluwer Academic/Plenum Press, Dordrecht/New York, 1999), p. 475.CrossRefGoogle Scholar
3Petrovsky, V.Y. and Rak, Z.S., Densification, microstructure and properties of electroconductive Si3N4-TaN Composites. Part I: Densification and microstructure. J. Eur. Ceram. Soc. 21, 219 (2001).CrossRefGoogle Scholar
4Petrovsky, V.Y. and Rak, Z.S., Densification, microstructure and properties of electroconductive Si3N4-TaN Composites. Part II: Electrical and mechanical properties. J. Eur. Ceram. Soc. 21, 237 (2001).CrossRefGoogle Scholar
5Herrmann, H., Balzer, B., Schubert, C. and Hermel, W., Densification, microstructure and properties of Si3N4-TiCN composites. J. Eur. Ceram. Soc . 12, 287 (1993).CrossRefGoogle Scholar
6Huang, J-L. and Chen, S-Y., Investigation of silicon nitride composites toughened with pronitrided TiB2. Ceram. Int. 21, 77 (1995).CrossRefGoogle Scholar
7Shew, B-Y. and Huang, J-L., Investigation of chemical reactions in TiB2/Si3N4 composites. Mater. Sci. Eng. A 159, 127 (1992).CrossRefGoogle Scholar
8Petrovic, J.J., Pena, M.I. and Kung, H., Fabrication and microstructure of MoSi2-reinforced Si3N4. J. Am. Ceram. Soc. 80, 1111 (1997).CrossRefGoogle Scholar
9Petrovic, J.J., Pena, M.I., Reimanis, I.E., Sandlin, M.S., Conzone, S.D., Kung, H.H. and Butt, D.P., Mechanical behaviour of MoSi2 Reinforced-Si3N4 matrix composites. J. Am. Ceram. Soc. 80, 3070 (1997).CrossRefGoogle Scholar
10Petrovic, J.J. and Honnel, R., MoSi2 particle reinforced-SiC and Si3N4 matrix composites. J. Mater. Sci. Lett. 9, 1083 (1990).CrossRefGoogle Scholar
11Kao, M., Properties of silicon nitride-molybdenum disilicide particulate ceramic composites. J. Am. Ceram Soc. 76, 2879 (1993).CrossRefGoogle Scholar
12Sciti, D., Guicciardi, S. and Bellosi, A., Microstructure and properties of Si3N4-MoSi2 composite. J. Proces. Res. 3, 87 (2002).Google Scholar
13Jeng, Y-L. and Lavernia, E.J., Review. Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557 (1994).CrossRefGoogle Scholar
14Petrovic, J.J. and Vasudevan, A.K., Key developments in high temperature structural silicides. Mater. Sci. Eng. A 261, 1 (1999).CrossRefGoogle Scholar
15Newman, A., Jewet, T., Sampath, S., Berndt, C. and Herman, H., Indentation response of molybdenum disilicide. J. Mater. Res. 13, 2662 (1998).CrossRefGoogle Scholar
16Pan, J., Surappa, M.K., Saravanan, R.A., Liu, B.W. and Yang, D.M., Fabrication and characterization of SiC/MoSi2 composites. Mater. Sci. Eng. A244, 191 (1998).CrossRefGoogle Scholar
17Newman, A., Sampath, S. and Herman, H., Processing and properties of MoSi2–SiC and MoSi2–Al2O3. Mater. Sci. Eng. A 261, 252 (1999).CrossRefGoogle Scholar
18Nordberg, L.O. and Ekström, T., Hot pressed MoSi2-Particulate reinforced α-SiAlOn composites. J. Am. Ceram. Soc. 78, 797 (1995).CrossRefGoogle Scholar
19Courtright, E.L., A comparison of MoSi2 matrix composites with other silicon-base composite systems. Mater. Sci. Eng. A 261, 53 (1999).CrossRefGoogle Scholar
20Niihara, K. and Suzuki, Y., Strong monolithic and composite MoSi2 materials by nanostructure design. Mater. Sci. Eng. A 261, 6 (1999).CrossRefGoogle Scholar
21Yamada, K. and Kamiya, N., High temperature mechanical properties of Si3N4-MoSi2 and Si3N4-SiC composites with network structures of second phases. Mater. Sci. Eng. A 261, 270 (1999).CrossRefGoogle Scholar
22Cinibulk, M.K. and Thomas, G., Grain-boundary-phase crystallization and strength of silicon nitride sintered with a YsiAlON glass. J. Am. Ceram. Soc. 73, 1606 (1990).CrossRefGoogle Scholar
23Chadwick, M.M., Jupp, R.S. and Wilkinson, D.S., Creep behavior of a sintered silicon nitride. J. Am. Ceram. Soc. 76, 385 (1993).CrossRefGoogle Scholar
24Ogbuji, L.U.T., The SiO2-Si3N4 Interface, Part I: Nature of the interphase. J. Am. Ceram. Soc. 78, 1272 (1995).CrossRefGoogle Scholar
25Ogbuji, L.U.T., The SiO2-Si3N4 Interface, Part II: O2 permeation and oxidation reaction. J. Am. Ceram. Soc. 78, 1279 (1995).CrossRefGoogle Scholar
26Galanov, B.A., Ivanov, S.M., Kartuzov, E.V., Kartuzov, V.V., Nickel, K.G. and Gogotsi, Y.G., Model of oxide scale growth on Si3N4 ceramics: Nitrogen diffusion through oxide scale and pore formation. Computational Materials Science 21, 79 (2001).CrossRefGoogle Scholar
27Chen, J., Sjöberg, J., Linquist, O., O’Meara, C. and Pejryd, L., The rate controlling processes in the oxidation of Hipped silicon nitride with and without sintering additives. J. Eur. Ceram. Soc. 7, 319 (1991).CrossRefGoogle Scholar
28Gogotsi, Y.G., Grathwohl, G., Thümmler, F., Yaroshenko, V.P., Herrmann, M. and Taut, Ch., Oxidation of yttria- and alumina-containing dense silicon nitride ceramics. J. Eur. Ceram. Soc. 11, 375 (1993).CrossRefGoogle Scholar
29Ricoult, M. Backhaus and Gogotsi, Y.G., Identification of oxidation mechanisms in silicon nitride ceramics by transmission electron microscopy studies of oxide scales. J. Mater. Res. 10, 2306 (1995).CrossRefGoogle Scholar
30Nickel, K.G. Multiple law modelling for the oxidation of advanced ceramics and a model-independent figure of merit in Corrosion of Advanced Materials: Measurement and Modelling , edited by Nickel, K.G. (NATO-ASI Series, 267, Kluwer Academic, Dordrecht, 1994), p. 73.Google Scholar
31Monteverde, F. and Bellosi, A., High oxidation resistance of hot pressed silicon nitride containing yttria and lanthania. J. Eur. Ceram. Soc. 18, 2313 (1998).CrossRefGoogle Scholar
32Murakami, Y., Akiyama, K., Yamamoto, H. and Sakata, H., Oxidation behavior of Si3N4 ceramics with Yb2O3, Al2O3 and SiO2 additives. J. Ceram. Soc. Jpn. Int. 106, 39 (1998).Google Scholar
33Zhang, B-R., Marino, F. and Sglavo, V.M., Post-hot-pressing and high-temperature bending strength of reaction-bondend silicon nitride-molybdenum disilicide and silicon nitride-tungsten silicide composites. J. Am. Ceram. Soc. 81, 1344 (1998).CrossRefGoogle Scholar
34Natesan, K. and Deevi, S.C., Oxidation behavior of molybdenum silicides and their composites. Intermetallics 8, 1147 (2000).CrossRefGoogle Scholar
35Chen, J., Li, C., Fu, Z., Tu, X., Sundberg, M. and Pompe, R., Low temperature oxidation behavior of a MoSi2-based material. Mater. Sci. Eng. A 261, 239 (1999).CrossRefGoogle Scholar
36Kurokawa, K., Houzumi, H.H., Saeki, I. and Takahashi, H., Low temperature oxidation of fully dense and porous MoSi2. Mater. Sci. Eng. A 261, 292 (1999).CrossRefGoogle Scholar
37Zhu, Y.T., Shu, L. and Butt, D.P., Kinetics products of molybdenum disilicide powder oxidation. J. Am. Ceram. Soc. 85, 507 (2002).CrossRefGoogle Scholar
38Zhu, Y.T., Stan, M., Conzone, S.D. and Butt, D.P., Thermal oxidation kinetics of MoSi2-based powders. J. Am. Ceram. Soc. 82, 2785 (1999).CrossRefGoogle Scholar
39Klemm, H., Tangermann, K., Schubert, C. and Hermel, W., Influence of molybdenum silicide additions on high temperature oxidation resistance of silicon nitride materials. J. Am. Ceram. Soc. 79, 2429 (1996).CrossRefGoogle Scholar
40Klemm, H. and Schubert, C., Silicon nitride/molybdenum disilicide composite with superior long-term oxidation resistance at 1500 °C. J. Am. Ceram. Soc. 84, 2430 (2001).CrossRefGoogle Scholar
41Klemm, H., Taut, C. and Wotting, G., Long-term stability of nonoxide ceramics in an oxidative environment at 1500 °C. J. Eur. Ceram. Soc. 23, 619 (2003).CrossRefGoogle Scholar
42Bellosi, A. Design and processing of non oxide ceramics. Case study: Factors affecting microstructure and properties of silicon nitride in Materials Science of Nitrides, Borides, Carbides, edited by Gogotsi, Y.G. and And, R.A.riewski (NATO-ARW Series, Kluwer Academic Publisher, Dordtecht, The Netherlands, 1999), p. 285.CrossRefGoogle Scholar