Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T18:44:57.564Z Has data issue: false hasContentIssue false

Factors controlling carbon retention in YBa2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

Evelyne Cazy
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surface, 47 avenue Albert Thomas, 87065 Limoges-cedex, France
Ali Khalfi
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surface, 47 avenue Albert Thomas, 87065 Limoges-cedex, France
David S. Smith
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surface, 47 avenue Albert Thomas, 87065 Limoges-cedex, France
Jean Pierre Bonnet
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surface, 47 avenue Albert Thomas, 87065 Limoges-cedex, France
Get access

Abstract

Natural degradation of YBa2Cu3O7−δ powders leads to trapping of CO2 by the powder. The presence of residual carbon in ceramics or textured materials can strongly affect the superconducting properties. Optimal conditions for carbon elimination during thermal treatment are defined. Amounts of carbon lower than 500 ppm are easily obtained when thermal treatment is performed in temperature, gas flowing rate, and heating ramp conditions allowing CO2 departure before pore closure. Liquid phase formation and the presence of BaCuO2 are limiting factors. An oxycarbonate formed by reaction between this latter compound and evolved CO2 is implied in the last step of the decarbonation process.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gallagher, P. K., Grader, G. S., and O'Bryan, H. M., Mater. Res. Bull. 23, 1491 (1988).CrossRefGoogle Scholar
2.Shaw, T. M., Dimos, D., Batson, P. E., Schrott, A. G., Clarke, D. R., and Duncombe, P. R., J. Mater. Res. 5, 1176 (1990).CrossRefGoogle Scholar
3.Heintz, J. M., Magro, C., Frohlich, K., Dordor, P., and Bonnet, J. P., Eur. J. Solid State Inorg. Chem. 27, 703 (1990).Google Scholar
4.Masuda, Y., Ogawa, R., Kawate, Y., Matsubara, K., Tateishi, T., and Sakka, S., J. Mater. Res. 8, 693 (1993).CrossRefGoogle Scholar
5.Cazy, E., Bahloul, D., Smith, D. S., and Bonnet, J. P., J. Phys. III (Paris) 4, 2105 (1994).Google Scholar
6.Pellerin, N., Gotor, F. J., Odier, P., Ayache, J., Fert, A., Cazy, E., and Bonnet, J. P., Physica C 235–240, 381 (1994).CrossRefGoogle Scholar
7.Gotor, F. J., Pellerin, N., Odier, P., Cazy, E., Bonnet, J. P., Fert, A., and Ayache, J., Physica C 247, 252 (1995).CrossRefGoogle Scholar
8.Ruckenstein, E., Narain, S., and Wu, N., J. Mater. Res. 4, 267 (1989).CrossRefGoogle Scholar
9.Chang, E. K., Ezell, E. F., and Kirschner, M. J., Sci. Technol. 3, 391 (1990).Google Scholar
10.Thompson, J. G., Hyde, B. G., Withers, R. L., and Anderson, J. S., Mater. Res. Bull. 22, 1715 (1987).CrossRefGoogle Scholar
11.Yan, M. F., Barns, R. L., O'Bryan, H. M., Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
12.Horowitz, H. S., Bordia, R. K., Flippen, R. B., Johnson, R. E., and Chowdhry, U., Mater. Res. Bull. 23, 821 (1988).CrossRefGoogle Scholar
13.Chaudhari, S. M., Viswanathan, V., Bendre, S. T., Nawale, P. P., Kanetkar, S. M., and Ogale, S. B., J. Appl. Phys. 66, 4509 (1989).CrossRefGoogle Scholar
14.Pham, D. K., Rupeng, Z., Fielding, P. E., Myhra, S., and Turner, P. S., J. Mater. Res. 6, 1148 (1991).CrossRefGoogle Scholar
15.Zhou, J. P. and McDevitt, J. T., Chem. Mater. 4, 953 (1992).CrossRefGoogle Scholar
16.Whitler, J. D. and Roth, R. S., in Phase Diagrams for High Tc Superconductors (American Ceramic Society, Westerville, OH, 1991), p. 62.Google Scholar
17.Karen, P. and Kjekshus, A., J. Solid State Chem. 94, 298 (1991).CrossRefGoogle Scholar
18.Gotor, F. J., Odier, P., Gervais, M., Choinet, J., and Monod, P., Physica C 218, 429 (1993).CrossRefGoogle Scholar
19.Boullay, P., Domenges, B., Hervieu, M., and Raveau, B., Chem. Mater. 5, 1683 (1993).CrossRefGoogle Scholar
20.Lindemer, T. B., Hubbard, C. R., and Brynestad, J., Physica C 167, 312 (1990).CrossRefGoogle Scholar