Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:35:40.615Z Has data issue: false hasContentIssue false

Fabrication of large grain YBCO by seeded peritectic solidification

Published online by Cambridge University Press:  31 January 2011

Wai Lo
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
C. D. Dewhurst
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
S-L. Dung
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

The ability to process large grain, uniform high temperature superconducting ceramics that exhibit high critical current densities at 77 K is essential if the enormous potential of these materials for a range of permanent magnet-type applications is to be realized. We report a study of the fabrication of large grain YBa2Cu3O7−δ by seeded peritectic solidification in which key processing parameters such as the peritectic melting process, the seed-YBCO reaction, and the YBCO solidification kinetics are investigated in detail. Evolution of the sample microstructure during various stages of the growth process, in particular, has been studied extensively. The superconducting properties of specimens cut from different regions of large grain samples have been measured using vibrating sample magnetometry, and the results correlated with the microstructure of the materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fukuyama, H., Seki, K., Takizawa, T., Endou, S., Murakami, M., Takaichi, H., and Koshizuka, N. in Advances in Superconductivity V, Proc. 5th Int. Symp. Supercond., edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, Japan, 1993), p. 1313.CrossRefGoogle Scholar
2.Takahata, R., Ueyama, H., and Kubo, A., in Advances in Superconductivity V, Proc. 5th Int. Symp. Supercond., edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, Japan, 1993), p. 1309.CrossRefGoogle Scholar
3.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 22 (1990).CrossRefGoogle Scholar
4.Decher, R., Peters, P. N., Sisk, R.C., Urban, E.W., Vlasse, M., and Rao, D. K., Appl. Supercond. 1, 1265 (1993).CrossRefGoogle Scholar
5.Moon, F. C., Chang, P. Z., Hojaji, H., Barkatt, A., and Thorpe, A.N., Jpn. J. Appl. Phys. 29, 1257 (1990).CrossRefGoogle Scholar
6.Chu, W. K., Ma, K.B., McMichael, C. K., and Lamb, M. A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
7.Luhman, T. S., Strasik, M., Day, A.C., Garrigus, D. F., Martin, T.D., McCrary, K. E., and Ahlstrom, H. G., in Applied Superconductivity 1995, Proc. 2nd European Applied Superconductivity, Inst. Phys. Conf. Ser. No. 148, edited by Dew-Hughes, D. (Institute of Physics Publishing, Bristol, UK, 1995), Vol. 1, p. 35.Google Scholar
8.Murakami, M., Appl. Supercond. 1, 1157 (1993).CrossRefGoogle Scholar
9.Kishio, K., Shimoyama, J., Hasegawa, T., and Kitazawa, K., Jpn. J. Appl. Phys. 26, L1228 (1987).CrossRefGoogle Scholar
10.Lo, W., Cardwell, D.A., Dung, S-L., and Barter, R.G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
11.Lee, D. F., Selvamanikam, V., and Salama, K., Physica C 165, 480 (1990).Google Scholar
12.Murakami, M., Kotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
13.Sengupta, S., Shi, D., Wang, Z., Biondo, C., Balachadran, U., and Goretta, K. C., Physica C 199, 43 (1992).CrossRefGoogle Scholar
14.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 8, 1240 (1993).CrossRefGoogle Scholar
15.Griffith, M.L., Huffman, R. T., and Halloran, J. W., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
16.Lo, W., Cardwell, D. A., Dung, S-L., and Barter, R.G., IEEE Trans. Appl. Supercond. 5, 1619 (1995).CrossRefGoogle Scholar
17.Lo, W., Cardwell, D. A., Dung, S.-L., and Barter, R. G., J. Mater. Res. 11, 3949 (1996).CrossRefGoogle Scholar
18.Lo, W., Cardwell, D. A., Hunneyball, P. D. and Dung, S-L., unpublished.Google Scholar
19.Cardwell, D. A., Lo, W., Thorpe, H. D. E., and Roberts, A., J. Mater. Sci. Lett. 14, 1444 (1995).CrossRefGoogle Scholar
20.Dung, S-L., M. Phil. Thesis, University of Cambridge (1995).Google Scholar
21.Shiohara, Y., presented at MRS Spring Meeting, 17–21 April 1995, San Francisco, California.Google Scholar
22.Honjo, S., Cima, M.J., Flemings, M.C., Haggerty, J.S., Sing, T.H., Shen, H., and Ribgy, K., presented at MRS Spring Meeting, 17–21 April 1995, San Francisco, California.Google Scholar
23.Kim, C-J., Kim, K-B., Hong, G-W., and Lee, H-Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
24.Varanaci, C. and McGinn, P.J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
25.Bean, C. P., Mod. Phys. 36, 3139 (1964).CrossRefGoogle Scholar
26.Chakrapani, V., Balkin, D., and McGinn, P., Appl. Supercond. 1, 71 (1993).CrossRefGoogle Scholar
27.Lepropre, M., Mont, I., Delamare, M.P., Hervieu, M., Simon, Ch., Provost, J., Desgardin, G., Raveau, B., Barbut, J. M., Bourgault, D., and Braithwaite, D., Cryogenics 34, 63 (1994).CrossRefGoogle Scholar
28.Matthess, D. N., Cochrane, J.W., and Russell, G. J., Physica C 249, 255 (1995).CrossRefGoogle Scholar
29.Dewhurst, C. D., Cardwell, D.A., and Alford, N. McN., J. Appl. Phys. 77, 2067 (1995).CrossRefGoogle Scholar